Dynamic Exclusion of Low-Fidelity Data in Bayesian Optimization for Autonomous Beamline Alignment
- URL: http://arxiv.org/abs/2408.06540v1
- Date: Tue, 13 Aug 2024 00:20:39 GMT
- Title: Dynamic Exclusion of Low-Fidelity Data in Bayesian Optimization for Autonomous Beamline Alignment
- Authors: Megha R. Narayanan, Thomas W. Morris,
- Abstract summary: This study is an investigation of methods to identify untrustworthy readings of beam quality and discourage the optimization model from seeking out points likely to yield low-fidelity beams.
The approaches explored include dynamic pruning using loss analysis of size and position models and a lengthscale-based genetic algorithm to determine which points to include in the model for optimal fit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Aligning beamlines at synchrotron light sources is a high-dimensional, expensive-to-sample optimization problem, as beams are focused using a series of dynamic optical components. Bayesian Optimization is an efficient machine learning approach to finding global optima of beam quality, but the model can easily be impaired by faulty data points caused by the beam going off the edge of the sensor or by background noise. This study, conducted at the National Synchrotron Light Source II (NSLS-II) facility at Brookhaven National Laboratory (BNL), is an investigation of methods to identify untrustworthy readings of beam quality and discourage the optimization model from seeking out points likely to yield low-fidelity beams. The approaches explored include dynamic pruning using loss analysis of size and position models and a lengthscale-based genetic algorithm to determine which points to include in the model for optimal fit. Each method successfully classified high and low fidelity points. This research advances BNL's mission to tackle our nation's energy challenges by providing scientists at all beamlines with access to higher quality beams, and faster convergence to these optima for their experiments.
Related papers
- Successive optimization of optics and post-processing with differentiable coherent PSF operator and field information [9.527960631238173]
We introduce a precise optical simulation model, and every operation in pipeline is differentiable.
To efficiently address various degradation, we design a joint optimization procedure that leverages field information.
arXiv Detail & Related papers (2024-12-19T07:49:40Z) - Action-Attentive Deep Reinforcement Learning for Autonomous Alignment of Beamlines [8.893851834398179]
Synchrotron radiation sources play a crucial role in fields such as materials science, biology, and chemistry.
The alignment of beamlines is a complex and time-consuming process, primarily carried out manually by engineers.
This paper addresses the alignment of beamlines by modeling it as a Markov Decision Process (MDP) and training an intelligent agent using RL.
arXiv Detail & Related papers (2024-11-19T02:50:11Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
Existing works estimate illumination by generating illumination maps or regressing illumination parameters.
This paper presents MixLight, a joint model that utilizes the complementary characteristics of SH and SG to achieve a more complete illumination representation.
arXiv Detail & Related papers (2024-04-19T10:17:10Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions.
Our approach is built upon the dual reformulation of the EOT problem based on weak OT.
arXiv Detail & Related papers (2023-10-02T11:24:36Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - Fast Beam Alignment via Pure Exploration in Multi-armed Bandits [91.11360914335384]
We develop a bandit-based fast BA algorithm to reduce BA latency for millimeter-wave (mmWave) communications.
Our algorithm is named Two-Phase Heteroscedastic Track-and-Stop (2PHT&S)
arXiv Detail & Related papers (2022-10-23T05:57:39Z) - Neighbor Regularized Bayesian Optimization for Hyperparameter
Optimization [12.544312247050236]
We propose a novel BO algorithm called Neighbor Regularized Bayesian Optimization (NRBO) to solve the problem.
We first propose a neighbor-based regularization to smooth each sample observation, which could reduce the observation noise efficiently without any extra training cost.
We conduct experiments on the bayesmark benchmark and important computer vision benchmarks such as ImageNet and COCO.
arXiv Detail & Related papers (2022-10-07T12:08:01Z) - Information-theoretic Inducing Point Placement for High-throughput
Bayesian Optimisation [9.732863739456036]
We propose a novel inducing point design that uses a principled information-theoretic criterion to select inducing points.
By choosing inducing points to maximally reduce both global uncertainty and uncertainty in the maximum value of the objective function, we build surrogate models able to support high-precision high- throughput BO.
arXiv Detail & Related papers (2022-06-06T08:56:56Z) - A Novel Look at LIDAR-aided Data-driven mmWave Beam Selection [24.711393214172148]
We propose a lightweight neural network (NN) architecture along with the corresponding LIDAR preprocessing.
Our NN-based beam selection scheme can achieve 79.9% throughput without any beam search overhead and 95% by searching among as few as 6 beams.
arXiv Detail & Related papers (2021-04-29T18:07:31Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR)
We propose a reinforcement learning (RL) based algorithm for cognitive multi-target detection in the presence of unknown disturbance statistics.
Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments.
arXiv Detail & Related papers (2020-05-10T16:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.