Digital Twin-Assisted Explainable AI for Robust Beam Prediction in mmWave MIMO Systems
- URL: http://arxiv.org/abs/2507.14180v1
- Date: Sat, 12 Jul 2025 09:56:20 GMT
- Title: Digital Twin-Assisted Explainable AI for Robust Beam Prediction in mmWave MIMO Systems
- Authors: Nasir Khan, Asmaa Abdallah, Abdulkadir Celik, Ahmed M. Eltawil, Sinem Coleri,
- Abstract summary: This paper proposes a robust and explainable deep learning (DL)-based beam alignment engine for mmWave systems.<n>The framework reduces real-world data needs by 70%, beam training overhead by 62%, and improves outlier detection by up to 8.5x.<n> Experimental results show that the proposed framework reduces real-world data needs by 70%, beam training overhead by 62%, and improves outlier detection by up to 8.5x.
- Score: 18.49800990388549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In line with the AI-native 6G vision, explainability and robustness are crucial for building trust and ensuring reliable performance in millimeter-wave (mmWave) systems. Efficient beam alignment is essential for initial access, but deep learning (DL) solutions face challenges, including high data collection overhead, hardware constraints, lack of explainability, and susceptibility to adversarial attacks. This paper proposes a robust and explainable DL-based beam alignment engine (BAE) for mmWave multiple-input multiple output (MIMO) systems. The BAE uses received signal strength indicator (RSSI) measurements from wide beams to predict the best narrow beam, reducing the overhead of exhaustive beam sweeping. To overcome the challenge of real-world data collection, this work leverages a site-specific digital twin (DT) to generate synthetic channel data closely resembling real-world environments. A model refinement via transfer learning is proposed to fine-tune the pre-trained model residing in the DT with minimal real-world data, effectively bridging mismatches between the digital replica and real-world environments. To reduce beam training overhead and enhance transparency, the framework uses deep Shapley additive explanations (SHAP) to rank input features by importance, prioritizing key spatial directions and minimizing beam sweeping. It also incorporates the Deep k-nearest neighbors (DkNN) algorithm, providing a credibility metric for detecting out-of-distribution inputs and ensuring robust, transparent decision-making. Experimental results show that the proposed framework reduces real-world data needs by 70%, beam training overhead by 62%, and improves outlier detection robustness by up to 8.5x, achieving near-optimal spectral efficiency and transparent decision making compared to traditional softmax based DL models.
Related papers
- Transformer-Driven Neural Beamforming with Imperfect CSI in Urban Macro Wireless Channels [27.445841110148674]
We introduce a novel unsupervised deep learning framework that integrates depthwise separable convolutions and transformers to generate beamforming weights under imperfect channel state information.<n>The primary goal is to enhance throughput by maximizing sum-rate while ensuring reliable communication.
arXiv Detail & Related papers (2025-04-15T23:41:24Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.<n> multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.<n>Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.<n>Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks [18.49800990388549]
This paper develops a robust deep learning (DL)-based beam alignment engine (BAE) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems.<n>CNN-based BAE utilizes received signal strength indicator ( RSSI) measurements over a set of wide beams to accurately predict the best narrow beam for each UE.<n>The proposed framework improves detection robustness by up to 5x and offers clearer insights into beam prediction decisions.
arXiv Detail & Related papers (2025-01-23T09:47:54Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments.
In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles.
The proposed approach, coined as Radar-aided blockage Dynamic Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model.
arXiv Detail & Related papers (2023-06-22T10:10:25Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - Fast Beam Alignment via Pure Exploration in Multi-armed Bandits [91.11360914335384]
We develop a bandit-based fast BA algorithm to reduce BA latency for millimeter-wave (mmWave) communications.
Our algorithm is named Two-Phase Heteroscedastic Track-and-Stop (2PHT&S)
arXiv Detail & Related papers (2022-10-23T05:57:39Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - A Novel Look at LIDAR-aided Data-driven mmWave Beam Selection [24.711393214172148]
We propose a lightweight neural network (NN) architecture along with the corresponding LIDAR preprocessing.
Our NN-based beam selection scheme can achieve 79.9% throughput without any beam search overhead and 95% by searching among as few as 6 beams.
arXiv Detail & Related papers (2021-04-29T18:07:31Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.