Quantum Circuit Learning on NISQ Hardware
- URL: http://arxiv.org/abs/2405.02069v1
- Date: Fri, 3 May 2024 13:00:32 GMT
- Title: Quantum Circuit Learning on NISQ Hardware
- Authors: Niclas Schillo, Andreas Sturm,
- Abstract summary: Current quantum computers are small and error-prone systems.
Fault-tolerant quantum computers are not expected to be available in the near future.
We show that exemplary QCL circuits with up to three qubits are executable on the IBM quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum computers are small and error-prone systems for which the term noisy intermediate-scale quantum (NISQ) has become established. Since large scale, fault-tolerant quantum computers are not expected to be available in the near future, the task of finding NISQ suitable algorithms has received a lot of attention in recent years. The most prominent candidates in this context are variational quantum algorithms. Due to their hybrid quantum-classical architecture they require fewer qubits and quantum gates so that they can cope with the limitations of NISQ computers. An important class of variational quantum algorithms is the quantum circuit learning (QCL) framework. Consisting of a data encoding and a trainable, parametrized layer, these schemes implement a quantum model function that can be fitted to the problem at hand. For instance, in combination with the parameter shift rule to compute derivatives, they can be used to solve differential equations. QCL and related algorithms have been widely studied in the literature. However, numerical experiments are usually limited to simulators and results from real quantum computers are scarce. In this paper we close this gap by executing QCL circuits on a superconducting IBM quantum processor in conjunction with an analysis of the hardware errors. We show that exemplary QCL circuits with up to three qubits are executable on the IBM quantum computer. For this purpose, multiple functions are learned and an exemplary differential equation is solved on the quantum computer. Moreover, we present how the QCL framework can be used to learn different quantum model functions in parallel, which can be applied to solve coupled differential equations in an efficient way.
Related papers
- Super Quantum Mechanics [37.69303106863453]
We introduce Super Quantum Mechanics (SQM) as a theory that considers states in Hilbert space subject to multiple quadratic constraints.
In this case, the stationary SQM problem is a quantum inverse problem with multiple applications in machine learning and artificial intelligence.
arXiv Detail & Related papers (2025-01-25T19:41:04Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - Variational Quantum Eigensolver for Classification in Credit Sales Risk [0.5524804393257919]
We take into consideration a quantum circuit which is based on the Variational Quantum Eigensolver (VQE) and so-called SWAP-Test.
In the utilized data set, two classes may be observed -- cases with low and high credit risk.
The solution is compact and requires only logarithmically increasing number of qubits.
arXiv Detail & Related papers (2023-03-05T23:08:39Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Quantum Model-Discovery [19.90246111091863]
Quantum algorithms for solving differential equations have shown a provable advantage in the fault-tolerant quantum computing regime.
We extend the applicability of near-term quantum computers to more general scientific machine learning tasks.
Our results show a promising path to Quantum Model Discovery (QMoD) on the interface between classical and quantum machine learning approaches.
arXiv Detail & Related papers (2021-11-11T18:45:52Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Quantum Algorithms for Solving Ordinary Differential Equations via
Classical Integration Methods [1.802439717192088]
We explore utilizing quantum computers for the purpose of solving differential equations.
We devise and simulate corresponding digital quantum circuits, and implement and run a 6$mathrmth$ order Gauss-Legendre collocation method.
As promising future scenario, the digital arithmetic method could be employed as an "oracle" within quantum search algorithms for inverse problems.
arXiv Detail & Related papers (2020-12-17T09:49:35Z) - Solving nonlinear differential equations with differentiable quantum
circuits [21.24186888129542]
We propose a quantum algorithm to solve systems of nonlinear differential equations.
We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits.
We show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space.
arXiv Detail & Related papers (2020-11-20T13:21:11Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
Implementation of variational Quantum Machine Learning (QML) algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices has issues related to the high number of qubits needed and the noise associated with multi-qubit gates.
We propose a variational QML algorithm using a dressed quantum network to address these issues.
Unlike in most other existing QML algorithms, our quantum circuit consists only of single-qubit gates, making it robust against noise.
arXiv Detail & Related papers (2020-07-20T16:29:32Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.