論文の概要: Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach
- arxiv url: http://arxiv.org/abs/2408.06634v1
- Date: Tue, 13 Aug 2024 04:53:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:36:27.429418
- Title: Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach
- Title(参考訳): Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach
- Authors: Haowei Ni, Shuchen Meng, Xupeng Chen, Ziqing Zhao, Andi Chen, Panfeng Li, Shiyao Zhang, Qifu Yin, Yuanqing Wang, Yuxi Chan,
- Abstract要約: 本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
- 参考スコア(独自算出の注目度): 6.112119533910774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
- Abstract(参考訳): 決算報告後の正確な株式市場予測は投資家にとって不可欠だ。
従来の手法、特に古典的な機械学習モデルは、収益報告に含まれる広範なテキストデータを効果的に処理し解釈することができず、市場の動きに影響を及ぼすニュアンスを見落としているため、これらの予測に苦慮している。
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この包括的データセットにより、精度、重み付けされたF1、マシューズ相関係数(MCC)、特にGPT-4などのベンチマークとの比較において優れた予測性能が得られる。
具体的には,ベースラインモデルよりも大幅に改良されたllama-3-8b-Instruct-4bitモデルの有効性を強調した。
また,「ホールド」オプションを含む出力能力を拡大し,様々な投資スタイルや時間枠に対応することを目的とした予測地平線を拡大する可能性についても論じる。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
在庫価格予測のためのディープラーニングモデルと従来の統計手法の比較分析は、ナイジェリア証券取引所のデータを用いている。
深層学習モデル、特にLSTMは、データの複雑な非線形パターンをキャプチャすることで従来の手法より優れている。
この結果は、金融予測と投資戦略を改善するための深層学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-09-29T11:20:20Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction [7.358590821647365]
本研究は, 大規模言語モデル(LLM)を用いてECCからよりリッチで予測性の高いコンテンツを抽出する, textbfECC Analyzer という新しいフレームワークを紹介する。
我々は、事前訓練された大規模モデルを用いて、ECCからテキストや音声の特徴を抽出し、階層的な情報抽出戦略を実装し、よりきめ細かい情報を抽出する。
実験により,本モデルが従来の分析ベンチマークより優れていることが示された。
論文 参考訳(メタデータ) (2024-04-29T07:11:39Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
本稿では,ストックダイナミクスを予測するLong Short-Term Memory(LSTM)ネットワークの可能性について検討する。
この研究は、複雑なパターンをキャプチャするLSTMの能力を高めるために、複数の特徴を取り入れている。
LSTMには25日間のタイムステップで重要な価格とボリューム特性が組み込まれている。
論文 参考訳(メタデータ) (2023-12-09T07:53:25Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。