論文の概要: Multilingual Models for Check-Worthy Social Media Posts Detection
- arxiv url: http://arxiv.org/abs/2408.06737v1
- Date: Tue, 13 Aug 2024 08:55:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:07:03.021052
- Title: Multilingual Models for Check-Worthy Social Media Posts Detection
- Title(参考訳): チェックワードソーシャルメディアポスト検出のための多言語モデル
- Authors: Sebastian Kula, Michal Gregor,
- Abstract要約: この研究には様々なモデルの包括的分析が含まれており、特に多言語モデルに焦点を当てている。
この研究の新規性は、検証可能な事実的主張を効果的に含む有害なポストとポストを同時に検出できるマルチラベル多言語分類モデルの開発にある。
- 参考スコア(独自算出の注目度): 0.552480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
- Abstract(参考訳): 本研究は,検証済みの事実主張と有害な主張を含むソーシャルメディアポストの検出を目的とした,トランスフォーマーに基づくNLPモデルに関する広範な研究である。
この研究は、データセットの収集、データセットの事前処理、アーキテクチャの選択、設定の設定、モデルのトレーニング(微調整)、モデルテスト、実装など、さまざまなアクティビティをカバーしている。
この研究はさまざまなモデルの包括的分析を含み、同じモデルが英語とアラビア語、ブルガリア語、オランダ語、ポーランド語、チェコ語、スロバキア語といった低リソース言語の両方でソーシャルメディアの投稿を処理できる多言語モデルに特化している。
本研究の結果は, 最先端モデルに対して検証され, 提案モデルのロバスト性を示した。
この研究の新規性は、検証可能な事実的主張を効果的に含む有害なポストとポストを同時に検出できるマルチラベル多言語分類モデルの開発にある。
関連論文リスト
- Split and Rephrase with Large Language Models [2.499907423888049]
Split and Rephrase (SPRP) タスクは、複雑な文を短い文法文の列に分割する。
タスク上の大きな言語モデルを評価し、主要なメトリクスに基づいて、技術の現状を大幅に改善できることを示します。
論文 参考訳(メタデータ) (2023-12-18T10:16:37Z) - Multilingual and Multi-topical Benchmark of Fine-tuned Language models and Large Language Models for Check-Worthy Claim Detection [1.4779899760345434]
本研究では,(1)微調整言語モデルと(2)チェック価値のあるクレーム検出タスクにおける大規模言語モデルの性能を比較した。
様々なソースやスタイルのテキストからなる多言語・多言語データセットを構築した。
論文 参考訳(メタデータ) (2023-11-10T15:36:35Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Language Model Cascades [72.18809575261498]
テスト時に1つのモデルで繰り返し対話する、あるいは複数のモデルの合成は、さらに機能を拡張する。
制御フローと動的構造を持つ場合、確率的プログラミングのテクニックが必要となる。
この観点から、スクラッチパッド/思考連鎖、検証器、STaR、選択推論、ツール利用など、いくつかの既存のテクニックを定式化します。
論文 参考訳(メタデータ) (2022-07-21T07:35:18Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Towards Trustworthy Deception Detection: Benchmarking Model Robustness
across Domains, Modalities, and Languages [10.131671217810581]
我々は、ドメイン外データ、モダリティ特化特徴、および英語以外の言語に対するモデルロバスト性を評価する。
我々は、追加の画像コンテンツを入力として、ELMo埋め込みはBERTまたはGLoVeと比較して大幅に少ないエラーをもたらすことを発見しました。
論文 参考訳(メタデータ) (2021-04-23T18:05:52Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Comparative Study of Language Models on Cross-Domain Data with Model
Agnostic Explainability [0.0]
この研究は、最先端の言語モデルであるBERT、ELECTRAとその派生品であるRoBERTa、ALBERT、DistilBERTを比較した。
実験結果は、2013年の格付けタスクとフィナンシャル・フレーズバンクの感情検出タスクの69%、そして88.2%の精度で、新たな最先端の「評価タスク」を確立した。
論文 参考訳(メタデータ) (2020-09-09T04:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。