Class-aware and Augmentation-free Contrastive Learning from Label Proportion
- URL: http://arxiv.org/abs/2408.06743v1
- Date: Tue, 13 Aug 2024 09:04:47 GMT
- Title: Class-aware and Augmentation-free Contrastive Learning from Label Proportion
- Authors: Jialiang Wang, Ning Zhang, Shimin Di, Ruidong Wang, Lei Chen,
- Abstract summary: Learning from Label Proportion (LLP) is a weakly supervised learning scenario in which training data is organized into predefined bags of instances.
We propose an augmentation-free contrastive framework TabLLP-BDC that introduces class-aware supervision at the instance level.
Our solution features a two-stage Bag Difference Contrastive (BDC) learning mechanism that establishes robust class-aware instance-level supervision.
- Score: 19.41511190742059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from Label Proportion (LLP) is a weakly supervised learning scenario in which training data is organized into predefined bags of instances, disclosing only the class label proportions per bag. This paradigm is essential for user modeling and personalization, where user privacy is paramount, offering insights into user preferences without revealing individual data. LLP faces a unique difficulty: the misalignment between bag-level supervision and the objective of instance-level prediction, primarily due to the inherent ambiguity in label proportion matching. Previous studies have demonstrated deep representation learning can generate auxiliary signals to promote the supervision level in the image domain. However, applying these techniques to tabular data presents significant challenges: 1) they rely heavily on label-invariant augmentation to establish multi-view, which is not feasible with the heterogeneous nature of tabular datasets, and 2) tabular datasets often lack sufficient semantics for perfect class distinction, making them prone to suboptimality caused by the inherent ambiguity of label proportion matching. To address these challenges, we propose an augmentation-free contrastive framework TabLLP-BDC that introduces class-aware supervision (explicitly aware of class differences) at the instance level. Our solution features a two-stage Bag Difference Contrastive (BDC) learning mechanism that establishes robust class-aware instance-level supervision by disassembling the nuance between bag label proportions, without relying on augmentations. Concurrently, our model presents a pioneering multi-task pretraining pipeline tailored for tabular-based LLP, capturing intrinsic tabular feature correlations in alignment with label proportion distribution. Extensive experiments demonstrate that TabLLP-BDC achieves state-of-the-art performance for LLP in the tabular domain.
Related papers
- Forming Auxiliary High-confident Instance-level Loss to Promote Learning from Label Proportions [17.36538357653019]
Learning from label proportions (LLP) aims to train a classifier by using bags of instances and the proportions of classes within bags, rather than annotated labels for each instance.
We propose a novel LLP method, namely Learning from Label Proportions with Auxiliary High-confident Instance-level Loss (L2P-AHIL)
We show that L2P-AHIL can surpass the existing baseline methods, and the performance gain can be more significant as the bag size increases.
arXiv Detail & Related papers (2024-11-15T17:14:18Z) - Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning [41.345794038968776]
We propose to leverage reduction-based pseudo-labels to alleviate the influence of incorrect candidate labels.
We show that reduction-based pseudo-labels exhibit greater consistency with the Bayes optimal classifier compared to pseudo-labels directly generated from the predictive model.
arXiv Detail & Related papers (2024-10-28T07:32:20Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
Partial Label Learning (PLL) is a type of weakly supervised learning where each training instance is assigned a set of candidate labels, but only one label is the ground-truth.
This is known as Unreliable Partial Label Learning (UPLL) that introduces an additional complexity due to the inherent unreliability and ambiguity of partial labels.
We propose the Unreliability-Robust Representation Learning framework (URRL) that leverages unreliability-robust contrastive learning to help the model fortify against unreliable partial labels effectively.
arXiv Detail & Related papers (2023-08-31T13:37:28Z) - Learning with Partial Labels from Semi-supervised Perspective [28.735185883881172]
Partial Label (PL) learning refers to the task of learning from partially labeled data.
We propose a novel PL learning method, namely Partial Label learning with Semi-Supervised Perspective (PLSP)
PLSP significantly outperforms the existing PL baseline methods, especially on high ambiguity levels.
arXiv Detail & Related papers (2022-11-24T15:12:16Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) has emerged as a widespread paradigm to synthesize training labels efficiently.
The core component of PWS is the label model, which infers true labels by aggregating the outputs of multiple noisy supervision sources as labeling functions.
Existing statistical label models typically rely only on the outputs of LF, ignoring the instance features when modeling the underlying generative process.
arXiv Detail & Related papers (2022-10-06T07:28:53Z) - Semi-supervised Object Detection via Virtual Category Learning [68.26956850996976]
This paper proposes to use confusing samples proactively without label correction.
Specifically, a virtual category (VC) is assigned to each confusing sample.
It is attributed to specifying the embedding distance between the training sample and the virtual category.
arXiv Detail & Related papers (2022-07-07T16:59:53Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
We propose Transductive CLIP, a novel framework for learning a classification network with noisy labels from scratch.
A class-conditional contrastive learning mechanism is proposed to mitigate the reliance on pseudo labels.
ensemble labels is adopted as a pseudo label updating strategy to stabilize the training of deep neural networks with noisy labels.
arXiv Detail & Related papers (2022-06-13T14:04:57Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.