Decision-Focused Learning to Predict Action Costs for Planning
- URL: http://arxiv.org/abs/2408.06876v2
- Date: Mon, 26 Aug 2024 11:29:07 GMT
- Title: Decision-Focused Learning to Predict Action Costs for Planning
- Authors: Jayanta Mandi, Marco Foschini, Daniel Holler, Sylvie Thiebaux, Jorg Hoffmann, Tias Guns,
- Abstract summary: Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of optimization problems.
This paper investigates the challenges of implementing DFL for automated planning in order to learn to predict the action costs.
- Score: 6.729103498871947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many automated planning applications, action costs can be hard to specify. An example is the time needed to travel through a certain road segment, which depends on many factors, such as the current weather conditions. A natural way to address this issue is to learn to predict these parameters based on input features (e.g., weather forecasts) and use the predicted action costs in automated planning afterward. Decision-Focused Learning (DFL) has been successful in learning to predict the parameters of combinatorial optimization problems in a way that optimizes solution quality rather than prediction quality. This approach yields better results than treating prediction and optimization as separate tasks. In this paper, we investigate for the first time the challenges of implementing DFL for automated planning in order to learn to predict the action costs. There are two main challenges to overcome: (1) planning systems are called during gradient descent learning, to solve planning problems with negative action costs, which are not supported in planning. We propose novel methods for gradient computation to avoid this issue. (2) DFL requires repeated planner calls during training, which can limit the scalability of the method. We experiment with different methods approximating the optimal plan as well as an easy-to-implement caching mechanism to speed up the learning process. As the first work that addresses DFL for automated planning, we demonstrate that the proposed gradient computation consistently yields significantly better plans than predictions aimed at minimizing prediction error; and that caching can temper the computation requirements.
Related papers
- On Learning Action Costs from Input Plans [8.68471096727195]
We introduce a new problem: that of learning the costs of a set of actions such that a set of input plans are optimal under the resulting planning model.
We present $LACFIPk$, an algorithm to learn action's costs from unlabeled input plans.
arXiv Detail & Related papers (2024-08-20T14:20:19Z) - Experiment Planning with Function Approximation [49.50254688629728]
We study the problem of experiment planning with function approximation in contextual bandit problems.
We propose two experiment planning strategies compatible with function approximation.
We show that a uniform sampler achieves competitive optimality rates in the setting where the number of actions is small.
arXiv Detail & Related papers (2024-01-10T14:40:23Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning [17.962860438133312]
Decision-focused learning (DFL) paradigm overcomes limitation by training to directly minimize a task loss, e.g. regret.
We propose an alternative method that makes no such assumptions, it combines smoothing with score function estimation which works on any task loss.
Experiments show that it typically requires more epochs, but that it is on par with specialized methods and performs especially well for the difficult case of problems with uncertainty in the constraints, in terms of solution quality, scalability, or both.
arXiv Detail & Related papers (2023-07-11T12:32:13Z) - On efficient computation in active inference [1.1470070927586016]
We present a novel planning algorithm for finite temporal horizons with drastically lower computational complexity.
We also simplify the process of setting an appropriate target distribution for new and existing active inference planning schemes.
arXiv Detail & Related papers (2023-07-02T07:38:56Z) - Planning with Dynamically Estimated Action Costs [2.8326418377665346]
Information about action costs is critical for real-world AI planning applications.
Recent approaches use black-box external action cost estimators, often learned from data, that are applied during the planning phase.
We suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost.
arXiv Detail & Related papers (2022-06-08T21:10:37Z) - Adversarial Plannning [8.930624061602046]
Planning algorithms are used in computational systems to direct autonomous behavior.
It is unclear how such algorithms will perform in the face of adversaries attempting to thwart the planner.
arXiv Detail & Related papers (2022-05-01T21:43:06Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.