論文の概要: Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation
- arxiv url: http://arxiv.org/abs/2408.06885v1
- Date: Tue, 13 Aug 2024 13:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 17:26:52.263597
- Title: Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation
- Title(参考訳): Voltran: 分散学習集団における信頼と信頼の解き放つ
- Authors: Hao Wang, Yichen Cai, Jun Wang, Chuan Ma, Chunpeng Ge, Xiangmou Qu, Lu Zhou,
- Abstract要約: 我々は、フェデレートラーニング(FL)のための信頼、機密性、堅牢性を達成するために設計された革新的なハイブリッドプラットフォームであるVoltranを紹介する。
FLアグリゲーションをTEEにオフロードして、分離され、信頼され、カスタマイズ可能なオフチェーン実行を提供します。
マルチSGX並列実行戦略を導入することで、複数のFLシナリオに強力なスケーラビリティを提供する。
- 参考スコア(独自算出の注目度): 12.446757264387564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decentralized Federated Learning (FL) paradigm built upon blockchain architectures leverages distributed node clusters to replace the single server for executing FL model aggregation. This paradigm tackles the vulnerability of the centralized malicious server in vanilla FL and inherits the trustfulness and robustness offered by blockchain. However, existing blockchain-enabled schemes face challenges related to inadequate confidentiality on models and limited computational resources of blockchains to perform large-scale FL computations. In this paper, we present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for FL based on the combination of the Trusted Execution Environment (TEE) and blockchain technology. We offload the FL aggregation computation into TEE to provide an isolated, trusted and customizable off-chain execution, and then guarantee the authenticity and verifiability of aggregation results on the blockchain. Moreover, we provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy to amortize the large-scale FL workload. We implement a prototype of Voltran and conduct a comprehensive performance evaluation. Extensive experimental results demonstrate that Voltran incurs minimal additional overhead while guaranteeing trust, confidentiality, and authenticity, and it significantly brings a significant speed-up compared to state-of-the-art ciphertext aggregation schemes.
- Abstract(参考訳): ブロックチェーンアーキテクチャ上に構築された分散型フェデレートラーニング(FL)パラダイムは、分散ノードクラスタを活用して、FLモデルアグリゲーションを実行するための単一のサーバを置き換える。
このパラダイムは、バニラFLにおける集中的な悪意のあるサーバの脆弱性に対処し、ブロックチェーンが提供する信頼性と堅牢性を継承する。
しかし、既存のブロックチェーン対応スキームは、大規模なFL計算を実行するために、モデルの機密性やブロックチェーンの限られた計算リソースの欠如に関連する課題に直面している。
本稿では,Trusted Execution Environment(TEE)とブロックチェーン技術を組み合わせたFLの信頼性,機密性,堅牢性を実現するために設計された,革新的なハイブリッドプラットフォームであるVoltranを紹介する。
FLアグリゲーション計算をTEEにオフロードして、分離され、信頼され、カスタマイズ可能なオフチェーン実行を提供し、ブロックチェーン上でのアグリゲーション結果の信頼性と妥当性を保証する。
さらに、大規模FLワークロードを減らし、マルチSGX並列実行戦略を導入することで、複数のFLシナリオに強力なスケーラビリティを提供する。
我々はVoltranのプロトタイプを実装し、総合的な性能評価を行う。
大規模な実験結果から、Voltranは信頼性、機密性、信頼性を保証しながら、最小限の追加オーバーヘッドを発生させ、最先端の暗号文アグリゲーションよりも大幅にスピードアップすることが示された。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
ブロックチェーンのような民主的な環境にフェデレートされた学習のオーケストレーションをアウトソーシングすることの実践的意義について検討する。
シミュレーションを用いて、よく知られたMNISTとCIFAR-10データセットに2つの異なるMLモデルを適用することにより、ブロックチェーンFL動作を評価する。
以上の結果から,モデルの不整合がモデルの精度に及ぼす影響(予測精度の最大35%低下)が示唆された。
論文 参考訳(メタデータ) (2023-10-11T13:18:23Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
フェデレートラーニング(FL)は実運用環境における真のリアルタイムアプリケーションを可能にすることが期待されている。
ブロックチェーン(FLchainとも呼ばれる)によるFLの権限付与は、台帳の不整合と情報の年齢(AoI)に関していくつかの意味を持つ。
本稿では,FLチェーン設定の影響について光を当て,AoIと台帳の不整合がFL性能に与える影響について検討する。
論文 参考訳(メタデータ) (2022-05-20T14:20:47Z) - Towards a Secure and Reliable Federated Learning using Blockchain [5.910619900053764]
Federated Learning(FL)は、デバイスがプライバシを保護しながらローカルデータセットを使用して学習を行うようなコラボレーショントレーニングを可能にする、分散機械学習技術である。
アドバンテージにもかかわらず、FLは信頼性、トラクタビリティ、匿名性に関連するいくつかの課題に悩まされている。
FLに適したセキュアで信頼性の高いブロックチェーンフレームワーク(SRB-FL)を提案する。
論文 参考訳(メタデータ) (2022-01-27T04:09:53Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Robust Blockchained Federated Learning with Model Validation and
Proof-of-Stake Inspired Consensus [43.12040317316018]
Federated Learning(FL)は、生のデータを公開することなく、モデルパラメータのみを交換する有望な分散学習ソリューションです。
ブロックチェーンアーキテクチャにおける2つのメカニズムを活用することで、ブロックチェーンベースの分散型FLフレームワークであるVBFLを提案する。
悪意のあるデバイスの15%で、VBFLは87%の精度を達成し、Vanilla FLよりも7.4倍高い。
論文 参考訳(メタデータ) (2021-01-09T06:30:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。