Measuring User Understanding in Dialogue-based XAI Systems
- URL: http://arxiv.org/abs/2408.06960v2
- Date: Wed, 14 Aug 2024 12:11:12 GMT
- Title: Measuring User Understanding in Dialogue-based XAI Systems
- Authors: Dimitry Mindlin, Amelie Sophie Robrecht, Michael Morasch, Philipp Cimiano,
- Abstract summary: State-of-the-art in XAI is still characterized by one-shot, non-personalized and one-way explanations.
In this paper, we measure understanding of users in three phases by asking them to simulate the predictions of the model they are learning about.
We analyze the data to reveal patterns of how the interaction between groups with high vs. low understanding gain differ.
- Score: 2.4124106640519667
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The field of eXplainable Artificial Intelligence (XAI) is increasingly recognizing the need to personalize and/or interactively adapt the explanation to better reflect users' explanation needs. While dialogue-based approaches to XAI have been proposed recently, the state-of-the-art in XAI is still characterized by what we call one-shot, non-personalized and one-way explanations. In contrast, dialogue-based systems that can adapt explanations through interaction with a user promise to be superior to GUI-based or dashboard explanations as they offer a more intuitive way of requesting information. In general, while interactive XAI systems are often evaluated in terms of user satisfaction, there are limited studies that access user's objective model understanding. This is in particular the case for dialogue-based XAI approaches. In this paper, we close this gap by carrying out controlled experiments within a dialogue framework in which we measure understanding of users in three phases by asking them to simulate the predictions of the model they are learning about. By this, we can quantify the level of (improved) understanding w.r.t. how the model works, comparing the state prior, and after the interaction. We further analyze the data to reveal patterns of how the interaction between groups with high vs. low understanding gain differ. Overall, our work thus contributes to our understanding about the effectiveness of XAI approaches.
Related papers
- Tell me more: Intent Fulfilment Framework for Enhancing User Experiences in Conversational XAI [0.6333053895057925]
This paper explores how different types of explanations collaboratively meet users' XAI needs.
We introduce the Intent Fulfilment Framework (IFF) for creating explanation experiences.
The Explanation Experience Dialogue Model integrates the IFF and "Explanation Followups" to provide users with a conversational interface.
arXiv Detail & Related papers (2024-05-16T21:13:43Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
"x-[plAIn]" is a new approach to make XAI more accessible to a wider audience through a custom Large Language Model.
Our goal was to design a model that can generate clear, concise summaries of various XAI methods.
Results from our use-case studies show that our model is effective in providing easy-to-understand, audience-specific explanations.
arXiv Detail & Related papers (2024-01-23T21:47:12Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Behaviour Trees for Conversational Explanation Experiences [1.5257668132713955]
This paper focuses on how users interact with an XAI system to fulfil multiple explanation needs satisfied by an explanation strategy.
We model the interactive explanation experience as a dialogue model.
An evaluation with a real-world use case shows that BTs have a number of properties that lend naturally to modelling and capturing explanation experiences.
arXiv Detail & Related papers (2022-11-11T18:39:38Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
We propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner.
To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs.
arXiv Detail & Related papers (2022-03-20T17:51:49Z) - Structure Extraction in Task-Oriented Dialogues with Slot Clustering [94.27806592467537]
In task-oriented dialogues, dialogue structure has often been considered as transition graphs among dialogue states.
We propose a simple yet effective approach for structure extraction in task-oriented dialogues.
arXiv Detail & Related papers (2022-02-28T20:18:12Z) - Explainable Artificial Intelligence (XAI) for Increasing User Trust in
Deep Reinforcement Learning Driven Autonomous Systems [0.8701566919381223]
We offer an explainable artificial intelligence (XAI) framework that provides a three-fold explanation.
We created a user-interface for our XAI framework and evaluated its efficacy via a human-user experiment.
arXiv Detail & Related papers (2021-06-07T16:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.