Revisiting de Broglie's Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework
- URL: http://arxiv.org/abs/2408.06972v1
- Date: Tue, 13 Aug 2024 15:29:18 GMT
- Title: Revisiting de Broglie's Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework
- Authors: David Darrow, John W. M. Bush,
- Abstract summary: We introduce a rich family of pilot-wave systems, with a view to reformulating de Broglie's double-solution program.
Notably, the entire family is local and Lorentz-invariant.
We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The relation between de Broglie's double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie's theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie's double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation $p=\hbar k$ at the particle's position, even as the particle momentum $p$ changes. The wave form and frequency thus evolve so as to conform to de Broglie's "harmony of phases", even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle's inertial mass. Finally, we see that the particle's wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle.
Related papers
- Convergence to Bohmian mechanics in a de Broglie-like pilot-wave system [0.0]
We present a general result that bridges Bohmian mechanics with classical pilot-wave theory.
We show that, with a different choice of coupling, their de Broglie-like system reduces exactly to single-particle Bohmian mechanics in the non-relativistic limit.
arXiv Detail & Related papers (2024-08-10T00:57:47Z) - Hydrodynamically Inspired Pilot-Wave Theory: An Ensemble Interpretation [4.01037106063721]
chapter explores a deterministic hydrodynamically-inspired ensemble interpretation for free relativistic particles.
We simulate an ensemble of multiple random undimensional-related particle trajectories.
We find coherent structures in which particles are less likely to cross.
arXiv Detail & Related papers (2023-07-24T06:39:40Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum solitodynamics: Non-linear wave mechanics and pilot-wave theory [0.0]
In 1927 Louis de Broglie proposed an alternative approach to standard quantum mechanics known as the double solution program (DSP)
Our model relies on a relativistic phase harmony' condition locking the phases of the solitonic particle and the guiding wave.
arXiv Detail & Related papers (2022-05-10T07:11:54Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - A mechanical analog of quantum bradyons and tachyons [0.0]
We present an analog of a quantum wave-particle duality: a vibrating string threaded through a freely moving bead or masslet'
For small string amplitudes, the particle movement is governed by a set of non-linear dynamical equations.
Subsonic and supersonic particles can fall into a quantum regime as with the slower-than-light bradyons and hypothetical, faster-than-light tachyons of particle physics.
arXiv Detail & Related papers (2020-02-19T12:56:52Z) - Plasmon Oscillations and de Broglie's Matter Waves Instabilities [0.0]
We study the effect of matter-wave instability on electron beam transport with arbitrary degree of degeneracy.
The quantum charge screening and the chemical potential effects on the matter-wave formation and instabilities are discussed in detail.
arXiv Detail & Related papers (2020-02-10T17:35:27Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.