Additivity of quantum relative entropies as a single-copy criterion
- URL: http://arxiv.org/abs/2507.05696v2
- Date: Sun, 20 Jul 2025 05:11:28 GMT
- Title: Additivity of quantum relative entropies as a single-copy criterion
- Authors: Salman Beigi, Roberto Rubboli, Marco Tomamichel,
- Abstract summary: We show that for a large class of problems, the question of whether regularization is needed or not can be determined at the single-copy level.<n>These problems include hypothesis testing with arbitrarily varying hypotheses as well as quantum resource theories used to derive fundamental bounds for entanglement and magic state distillation.<n>We derive the Stein, Chernoff, and Hoeffding exponents for these problems and establish necessary and sufficient conditions for their additivity, while also presenting partial results for the strong converse exponent.
- Score: 10.773673764125439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fundamental goal of information theory is to characterize complex operational tasks using efficiently computable information quantities, Shannon's capacity formula being the prime example of this. However, many tasks in quantum information can only be characterized by regularized entropic measures that are often not known to be computable and for which efficient approximations are scarce. It is thus of fundamental importance to understand when regularization is not needed, opening the door to an efficiently computable characterization based on additive quantities. Here, we demonstrate that for a large class of problems, the question of whether regularization is needed or not can be determined at the single-copy level. Specifically, we demonstrate that regularization of the Umegaki relative entropy, along with related quantities such as the Petz and sandwiched relative entropies, is not needed if and only if a single-copy optimizer satisfies a certain property. These problems include hypothesis testing with arbitrarily varying hypotheses as well as quantum resource theories used to derive fundamental bounds for entanglement and magic state distillation. We derive the Stein, Chernoff, and Hoeffding exponents for these problems and establish necessary and sufficient conditions for their additivity, while also presenting partial results for the strong converse exponent.
Related papers
- Efficient approximation of regularized relative entropies and applications [11.59751616011475]
We show that the regularized relative entropy can be efficiently approximated within an additive error by a quantum relative entropy program of size.<n>This applies to particular to the regularized relative entropy in adversarial quantum channel discrimination.<n>In particular, when the set of interest does not directly satisfy the required structural assumptions, it can be relaxed to one that does.
arXiv Detail & Related papers (2025-02-21T18:29:45Z) - Reducing the sampling complexity of energy estimation in quantum many-body systems using empirical variance information [45.18582668677648]
We consider the problem of estimating the energy of a quantum state preparation for a given Hamiltonian in Pauli decomposition.<n>We construct an adaptive estimator using the state's actual variance.
arXiv Detail & Related papers (2025-02-03T19:00:01Z) - Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - Asymptotic quantification of entanglement with a single copy [8.056359341994941]
This paper introduces a new way of benchmarking the protocol of entanglement distillation (purification)
Instead of measuring its yield, we focus on the best error achievable.
We show this solution to be given by the reverse relative entropy of entanglement, a single-letter quantity that can be evaluated using only a single copy of a quantum state.
arXiv Detail & Related papers (2024-08-13T17:57:59Z) - One-Shot Min-Entropy Calculation Of Classical-Quantum States And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.<n>It offers an alternative tight finite-data analysis for the BB84 quantum key distribution scheme.<n>It gives the best finite-key bound known to date for a variant of device independent quantum key distribution protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Overcoming entropic limitations on asymptotic state transformations
through probabilistic protocols [12.461503242570641]
We show that it is no longer the case when one allows protocols that may only succeed with some probability.
We show that this is no longer the case when one allows protocols that may only succeed with some probability.
arXiv Detail & Related papers (2022-09-07T18:00:00Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - The variance of relative surprisal as single-shot quantifier [0.0]
We show that (relative) surprisal gives sufficient conditions for approximate state-transitions between pairs of quantum states in single-shot setting.
We further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy.
arXiv Detail & Related papers (2020-09-17T16:06:54Z) - Cost of quantum entanglement simplified [13.683637401785505]
We introduce an entanglement measure that has a precise information-theoretic meaning as the exact cost required to prepare an entangled state.
Our results bring key insights into the fundamental entanglement structure of arbitrary quantum states, and they can be used directly to assess and quantify the entanglement produced in quantum-physical experiments.
arXiv Detail & Related papers (2020-07-28T14:36:23Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - On estimating the entropy of shallow circuit outputs [49.1574468325115]
Estimating the entropy of probability distributions and quantum states is a fundamental task in information processing.
We show that entropy estimation for distributions or states produced by either log-depth circuits or constant-depth circuits with gates of bounded fan-in and unbounded fan-out is at least as hard as the Learning with Errors problem.
arXiv Detail & Related papers (2020-02-27T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.