ChemDFM-X: Towards Large Multimodal Model for Chemistry
- URL: http://arxiv.org/abs/2409.13194v1
- Date: Fri, 20 Sep 2024 03:55:34 GMT
- Title: ChemDFM-X: Towards Large Multimodal Model for Chemistry
- Authors: Zihan Zhao, Bo Chen, Jingpiao Li, Lu Chen, Liyang Wen, Pengyu Wang, Zichen Zhu, Danyang Zhang, Ziping Wan, Yansi Li, Zhongyang Dai, Xin Chen, Kai Yu,
- Abstract summary: We introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X)
Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions.
ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities.
- Score: 16.811223849365483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid developments of AI tools are expected to offer unprecedented assistance to the research of natural science including chemistry. However, neither existing unimodal task-specific specialist models nor emerging general large multimodal models (LMM) can cover the wide range of chemical data modality and task categories. To address the real demands of chemists, a cross-modal Chemical General Intelligence (CGI) system, which serves as a truly practical and useful research assistant utilizing the great potential of LMMs, is in great need. In this work, we introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X). Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions. This strategy creates sufficient chemical training corpora, while significantly reducing excessive expense, resulting in an instruction-tuning dataset containing 7.6M data. After instruction finetuning, ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities. The results demonstrate the capacity of ChemDFM-X for multimodal and inter-modal knowledge comprehension. ChemDFM-X marks a significant milestone toward aligning all modalities in chemistry, a step closer to CGI.
Related papers
- ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
We introduce textbfChemVLM, an open-source chemical multimodal large language model for chemical applications.
ChemVLM is trained on a carefully curated bilingual dataset that enhances its ability to understand both textual and visual chemical information.
We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks.
arXiv Detail & Related papers (2024-08-14T01:16:40Z) - PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes [33.293741487835824]
Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines.
Current approaches, however, often neglect the critical role of multiple molecule graph interaction in understanding chemical reactions.
This study introduces PRESTO, a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations.
arXiv Detail & Related papers (2024-06-19T03:59:46Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
arXiv Detail & Related papers (2024-02-10T01:11:59Z) - ChemDFM: A Large Language Foundation Model for Chemistry [27.864255196445324]
A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry.
We develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions.
We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface.
arXiv Detail & Related papers (2024-01-26T12:45:55Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-X automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology.
Chemist-X interrogates online molecular databases and distills critical data from the latest literature database.
Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.