論文の概要: Abstract Operations Research Modeling Using Natural Language Inputs
- arxiv url: http://arxiv.org/abs/2408.07272v2
- Date: Tue, 28 Jan 2025 18:40:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 22:09:10.853946
- Title: Abstract Operations Research Modeling Using Natural Language Inputs
- Title(参考訳): 自然言語入力を用いた抽象操作研究モデリング
- Authors: Junxuan Li, Ryan Wickman, Sahil Bhatnagar, Raj Kumar Maity, Arko Mukherjee,
- Abstract要約: オペレーションリサーチ(OR)は、数学的モデルを使用して意思決定を強化するが、これらのモデルを開発するには専門家の知識が必要であり、時間を要する可能性がある。
本稿では,Large Language Model (LLM) の最近の進歩を利用して,自然言語を用いて表現された非専門的ユーザクエリからORソリューションを作成し,編集する手法を提案する。
- 参考スコア(独自算出の注目度): 9.105616622623629
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Operations research (OR) uses mathematical models to enhance decision-making, but developing these models requires expert knowledge and can be time-consuming. Automated mathematical programming (AMP) has emerged to simplify this process, but existing systems have limitations. This paper introduces a novel methodology that uses recent advances in Large Language Model (LLM) to create and edit OR solutions from non-expert user queries expressed using Natural Language. This reduces the need for domain expertise and the time to formulate a problem. The paper presents an end-to-end pipeline, named NL2OR, that generates solutions to OR problems from natural language input, and shares experimental results on several important OR problems.
- Abstract(参考訳): オペレーションリサーチ(OR)は、数学的モデルを使用して意思決定を強化するが、これらのモデルを開発するには専門家の知識が必要であり、時間を要する可能性がある。
自動数学的プログラミング(AMP)はこのプロセスを単純化するために登場したが、既存のシステムには制限がある。
本稿では,Large Language Model (LLM) の最近の進歩を利用して,自然言語を用いて表現された非専門的ユーザクエリからORソリューションを作成し,編集する手法を提案する。
これにより、ドメインの専門知識と問題を定式化する時間を減らすことができる。
本稿では,自然言語入力からOR問題の解を生成するNL2ORというエンドツーエンドパイプラインを提案し,いくつかの重要なOR問題に対して実験結果を共有する。
関連論文リスト
- Résumé abstractif à partir d'une transcription audio [0.0]
これらの手法を用いて,E2E(End to End)音声要約モデルを提案する。
本稿では,これらの手法の有効性を考察し,これらの手法の適用性について結論を導出する。
論文 参考訳(メタデータ) (2025-04-16T06:24:49Z) - Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems [61.26070215983157]
EFA(Executable Functional Abstraction)という用語を導入し,数学問題のプログラムを示す。
EFAのような構造は、ストレステストモデルの問題生成器として数学推論に有用であることが示されている。
高度な数学問題に対するEFAの自動構築について検討する。
論文 参考訳(メタデータ) (2025-04-14T00:06:48Z) - Self-Steering Language Models [113.96916935955842]
DisCIPLは、"セルフステアリング(self-steering)"言語モデルのメソッドである。
DisCIPLはPlannerモデルを使用してタスク固有の推論プログラムを生成する。
我々の研究は、高度に並列化されたモンテカルロ推論戦略の設計空間を開く。
論文 参考訳(メタデータ) (2025-04-09T17:54:22Z) - An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems [0.0]
大規模言語モデルは、オープンな問題に対する問題解決活動をサポートする新しいメソッドの作成をサポートすることができる。
本報告では、モデルプロンプト、強化学習、検索型生成を含む、大規模言語モデルに関する現在の研究を要約する。
論文 参考訳(メタデータ) (2024-12-31T17:48:33Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - A Quantum-Inspired Analysis of Human Disambiguation Processes [0.0]
この論文では、基礎量子力学から生じる形式主義を言語学から生じるあいまいさの研究に適用する。
その後、人間の行動予測や現在のNLP法よりも優れた結果が得られた。
論文 参考訳(メタデータ) (2024-08-14T09:21:23Z) - Abstractive summarization from Audio Transcription [0.0]
これらの手法を用いて,E2E(End to End)音声要約モデルを提案する。
本稿では,これらの手法の有効性を考察し,これらの手法の適用性について結論を導出する。
論文 参考訳(メタデータ) (2024-07-30T16:38:38Z) - Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
この調査は、推論中に計算をスケールするメリットに焦点を当てている。
我々はトークンレベルの生成アルゴリズム、メタジェネレーションアルゴリズム、効率的な生成という3つの領域を統一的な数学的定式化の下で探索する。
論文 参考訳(メタデータ) (2024-06-24T17:45:59Z) - Eliciting Problem Specifications via Large Language Models [4.055489363682198]
大型言語モデル(LLM)は、問題クラスを半形式仕様にマッピングするために利用することができる。
認知システムは、問題空間仕様を使用して、問題クラスからの問題の複数のインスタンスを解決することができる。
論文 参考訳(メタデータ) (2024-05-20T16:19:02Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
本稿では,BOEDを用いて情報的質問の選択を案内するフレームワークOPENと,特徴抽出のためのLMを紹介する。
ユーザスタディでは,OPEN が既存の LM- や BOED をベースとした選好手法よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-08T18:57:52Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
我々はNLPの分野における主要な考え方と最先端の方法論について論じる。
我々は2つの異なるアプローチを詳細に議論し、ルールセットの反復的開発を強調した。
提案手法は, 自動車分野と鉄道分野の2つの産業分野において実証された。
論文 参考訳(メタデータ) (2023-09-23T05:45:19Z) - Tackling Math Word Problems with Fine-to-Coarse Abstracting and
Reasoning [22.127301797950572]
本稿では,局所的なきめ細かい情報と,その大域的な論理構造の両方を捉えるために,微粒な方法で数学語問題をモデル化することを提案する。
我々のモデルは局所的な変動に自然に敏感であり、目に見えない問題タイプにより良い一般化が可能である。
論文 参考訳(メタデータ) (2022-05-17T12:14:44Z) - Machine Learning Methods in Solving the Boolean Satisfiability Problem [72.21206588430645]
本論文は, Boolean satisfiability problem (SAT) を機械学習技術で解くことに関する最近の文献をレビューする。
ML-SATソルバを手作り特徴を持つナイーブ分類器からNeuroSATのような新たなエンド・ツー・エンドSATソルバまで,進化するML-SATソルバについて検討する。
論文 参考訳(メタデータ) (2022-03-02T05:14:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。