論文の概要: A Quantum-Inspired Analysis of Human Disambiguation Processes
- arxiv url: http://arxiv.org/abs/2408.07402v1
- Date: Wed, 14 Aug 2024 09:21:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:54:15.310991
- Title: A Quantum-Inspired Analysis of Human Disambiguation Processes
- Title(参考訳): 量子インスピレーションによる人間の曖昧化過程の解析
- Authors: Daphne Wang,
- Abstract要約: この論文では、基礎量子力学から生じる形式主義を言語学から生じるあいまいさの研究に適用する。
その後、人間の行動予測や現在のNLP法よりも優れた結果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formal languages are essential for computer programming and are constructed to be easily processed by computers. In contrast, natural languages are much more challenging and instigated the field of Natural Language Processing (NLP). One major obstacle is the ubiquity of ambiguities. Recent advances in NLP have led to the development of large language models, which can resolve ambiguities with high accuracy. At the same time, quantum computers have gained much attention in recent years as they can solve some computational problems faster than classical computers. This new computing paradigm has reached the fields of machine learning and NLP, where hybrid classical-quantum learning algorithms have emerged. However, more research is needed to identify which NLP tasks could benefit from a genuine quantum advantage. In this thesis, we applied formalisms arising from foundational quantum mechanics, such as contextuality and causality, to study ambiguities arising from linguistics. By doing so, we also reproduced psycholinguistic results relating to the human disambiguation process. These results were subsequently used to predict human behaviour and outperformed current NLP methods.
- Abstract(参考訳): フォーマル言語はコンピュータプログラミングに必須であり、コンピュータで容易に処理できるように構築されている。
対照的に、自然言語はより困難であり、自然言語処理(NLP)の分野を扇動している。
最大の障害はあいまいさの普遍性である。
NLPの最近の進歩は、あいまいさを高精度に解決できる大規模な言語モデルの開発につながっている。
同時に、量子コンピュータは古典的コンピュータよりも高速に計算問題を解くことができるため、近年多くの注目を集めている。
この新しいコンピューティングパラダイムは、ハイブリッド古典量子学習アルゴリズムが出現する機械学習とNLPの分野に到達した。
しかし、どのNLPタスクが真に量子的優位性から恩恵を受けるかを特定するためには、さらなる研究が必要である。
この論文では、文脈性や因果性などの基礎量子力学から生じる形式主義を言語学から生じる曖昧さの研究に適用した。
また,人間の曖昧性に関する心理言語学的結果も再現した。
これらの結果はその後の人間の行動予測や現在のNLP法よりも優れていた。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
この調査は、推論中に計算をスケールするメリットに焦点を当てている。
我々はトークンレベルの生成アルゴリズム、メタジェネレーションアルゴリズム、効率的な生成という3つの領域を統一的な数学的定式化の下で探索する。
論文 参考訳(メタデータ) (2024-06-24T17:45:59Z) - Quantum Natural Language Processing [0.03495246564946555]
言語処理は、人工知能の現在の発展の中心にある。
本稿は,NLP関連技術が量子言語処理にどのように使われているかを示す。
論文 参考訳(メタデータ) (2024-03-28T18:15:07Z) - Deep Learning Approaches for Improving Question Answering Systems in
Hepatocellular Carcinoma Research [0.0]
近年,自然言語処理(NLP)の進歩は,ディープラーニング技術によって加速されている。
膨大な量のデータに基づいてトレーニングされたBERTとGPT-3は、言語理解と生成に革命をもたらした。
本稿では,大規模モデルベースNLPの現状と今後の展望について述べる。
論文 参考訳(メタデータ) (2024-02-25T09:32:17Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Exponential separations between classical and quantum learners [2.209921757303168]
我々は,定義の微妙な違いが,学習者が満足して解決すべき要件や課題を著しく異なるものにする可能性について論じる。
本稿では,データ生成関数の同定に古典的困難を主眼として,2つの新たな学習分離を提案する。
論文 参考訳(メタデータ) (2023-06-28T08:55:56Z) - Quantum Natural Language Processing based Sentiment Analysis using
lambeq Toolkit [0.5735035463793007]
量子自然言語処理(Quantum Natural Language Processing, QNLP)は、NLPタスクに量子的優位性を提供する可能性のある、若く徐々に発展してきた技術である。
感情分析にQNLPを最初に応用し、3種類のシミュレーションで完全テストセット精度を実現し、ノイズの多い量子デバイス上で実行された実験に対して適切な精度を実現した。
論文 参考訳(メタデータ) (2023-05-30T19:54:02Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - Grammar-Aware Question-Answering on Quantum Computers [0.17205106391379021]
ノイズの多い中間スケール量子(NISQ)ハードウェア上でNLPタスクの最初の実装を行う。
我々は量子状態においてワード平均を符号化し、文法構造を明示的に考慮する。
我々の新しいQNLPモデルは、量子ハードウェアの品質が向上するにつれて、スケーラビリティの具体的な約束を示す。
論文 参考訳(メタデータ) (2020-12-07T14:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。