UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection
- URL: http://arxiv.org/abs/2408.07430v1
- Date: Wed, 14 Aug 2024 10:06:39 GMT
- Title: UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection
- Authors: Mu Chen, Minghan Chen, Yi Yang,
- Abstract summary: This paper focuses on Human-Object Interaction (HOI) detection.
It addresses the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame.
We propose a novel approach textscUAHOI, Uncertainty-aware Robust Human-Object Interaction Learning.
- Score: 18.25576487115016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on Human-Object Interaction (HOI) detection, addressing the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame. Spearheaded by Detection Transformer (DETR), recent developments lead to significant improvements by replacing traditional region proposals by a set of learnable queries. However, despite the powerful representation capabilities provided by Transformers, existing Human-Object Interaction (HOI) detection methods still yield low confidence levels when dealing with complex interactions and are prone to overlooking interactive actions. To address these issues, we propose a novel approach \textsc{UAHOI}, Uncertainty-aware Robust Human-Object Interaction Learning that explicitly estimates prediction uncertainty during the training process to refine both detection and interaction predictions. Our model not only predicts the HOI triplets but also quantifies the uncertainty of these predictions. Specifically, we model this uncertainty through the variance of predictions and incorporate it into the optimization objective, allowing the model to adaptively adjust its confidence threshold based on prediction variance. This integration helps in mitigating the adverse effects of incorrect or ambiguous predictions that are common in traditional methods without any hand-designed components, serving as an automatic confidence threshold. Our method is flexible to existing HOI detection methods and demonstrates improved accuracy. We evaluate \textsc{UAHOI} on two standard benchmarks in the field: V-COCO and HICO-DET, which represent challenging scenarios for HOI detection. Through extensive experiments, we demonstrate that \textsc{UAHOI} achieves significant improvements over existing state-of-the-art methods, enhancing both the accuracy and robustness of HOI detection.
Related papers
- Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset [23.155946032377052]
We introduce a novel instance-wise calibration method based on an energy model.
Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive consideration of uncertainty.
In experiments, we show that the proposed method consistently maintains robust performance across the spectrum.
arXiv Detail & Related papers (2024-07-17T06:14:55Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
Uncertainty estimation is an important task for critical problems, such as robotics and autonomous driving.
We propose a Variational Neural Network-based version of a Voxel Pseudo Image Tracking (VPIT) method for 3D Single Object Tracking.
arXiv Detail & Related papers (2023-02-12T13:34:50Z) - Parallel Reasoning Network for Human-Object Interaction Detection [53.422076419484945]
We propose a new transformer-based method named Parallel Reasoning Network(PR-Net)
PR-Net constructs two independent predictors for instance-level localization and relation-level understanding.
Our PR-Net has achieved competitive results on HICO-DET and V-COCO benchmarks.
arXiv Detail & Related papers (2023-01-09T17:00:34Z) - A Review of Uncertainty Calibration in Pretrained Object Detectors [5.440028715314566]
We investigate the uncertainty calibration properties of different pretrained object detection architectures in a multi-class setting.
We propose a framework to ensure a fair, unbiased, and repeatable evaluation.
We deliver novel insights into why poor detector calibration emerges.
arXiv Detail & Related papers (2022-10-06T14:06:36Z) - Transformer Uncertainty Estimation with Hierarchical Stochastic
Attention [8.95459272947319]
We propose a novel way to enable transformers to have the capability of uncertainty estimation.
This is achieved by learning a hierarchical self-attention that attends to values and a set of learnable centroids.
We empirically evaluate our model on two text classification tasks with both in-domain (ID) and out-of-domain (OOD) datasets.
arXiv Detail & Related papers (2021-12-27T16:43:31Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
We introduce a new technique that combines two popular methods to estimate uncertainty in object detection.
Our framework employs deep ensembles and Monte Carlo dropout for approximating predictive uncertainty.
arXiv Detail & Related papers (2021-06-28T22:29:59Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.