論文の概要: Optimising MFCC parameters for the automatic detection of respiratory diseases
- arxiv url: http://arxiv.org/abs/2408.07522v1
- Date: Wed, 14 Aug 2024 12:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:24:15.151832
- Title: Optimising MFCC parameters for the automatic detection of respiratory diseases
- Title(参考訳): 呼吸器疾患の自動検出のためのMFCCパラメータの最適化
- Authors: Yuyang Yan, Sami O. Simons, Loes van Bemmel, Lauren Reinders, Frits M. E. Franssen, Visara Urovi,
- Abstract要約: MFCC(Mel Frequency Cepstral Coefficients)は自動解析に広く用いられている。
MFCC抽出パラメータが呼吸器疾患の診断に与える影響について総合的な研究は行われていない。
本研究では,鍵パラメータ,すなわち,フレーム間の係数数,フレーム長,ホップ長が呼吸条件に及ぼす影響について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Voice signals originating from the respiratory tract are utilized as valuable acoustic biomarkers for the diagnosis and assessment of respiratory diseases. Among the employed acoustic features, Mel Frequency Cepstral Coefficients (MFCC) is widely used for automatic analysis, with MFCC extraction commonly relying on default parameters. However, no comprehensive study has systematically investigated the impact of MFCC extraction parameters on respiratory disease diagnosis. In this study, we address this gap by examining the effects of key parameters, namely the number of coefficients, frame length, and hop length between frames, on respiratory condition examination. Our investigation uses four datasets: the Cambridge COVID-19 Sound database, the Coswara dataset, the Saarbrucken Voice Disorders (SVD) database, and a TACTICAS dataset. The Support Vector Machine (SVM) is employed as the classifier, given its widespread adoption and efficacy. Our findings indicate that the accuracy of MFCC decreases as hop length increases, and the optimal number of coefficients is observed to be approximately 30. The performance of MFCC varies with frame length across the datasets: for the COVID-19 datasets (Cambridge COVID-19 Sound database and Coswara dataset), performance declines with longer frame lengths, while for the SVD dataset, performance improves with increasing frame length (from 50 ms to 500 ms). Furthermore, we investigate the optimized combination of these parameters and observe substantial enhancements in accuracy. Compared to the worst combination, the SVM model achieves an accuracy of 81.1%, 80.6%, and 71.7%, with improvements of 19.6%, 16.10%, and 14.90% for the Cambridge COVID-19 Sound database, the Coswara dataset, and the SVD dataset respectively.
- Abstract(参考訳): 呼吸器由来の音声信号は、呼吸器疾患の診断および評価に有用な音響バイオマーカーとして利用される。
音響特性のうち、Mel Frequency Cepstral Coefficients (MFCC) は自動解析に広く用いられている。
しかし,MFCC抽出パラメータが呼吸器疾患の診断に与える影響について,総合的な研究は行われていない。
本研究では,鍵パラメータ,すなわちフレーム間の係数数,フレーム長,ホップ長が呼吸条件に及ぼす影響を調べることにより,このギャップに対処する。
調査では、Cambridge COVID-19 Soundデータベース、Cosharaデータセット、Saarbrucken Voice Disorders(SVD)データベース、TACTICASデータセットの4つのデータセットを使用しました。
サポートベクトルマシン(SVM)は、広く採用され、有効性が高いため、分類器として使用される。
その結果, ホップ長の増加に伴いMFCCの精度は低下し, 最適係数は約30。
COVID-19データセット(Cambridge COVID-19 SoundデータベースとCosharaデータセット)では、長いフレーム長でパフォーマンスが低下する一方、SVDデータセットでは、フレーム長の増大(50msから500ms)によってパフォーマンスが向上する。
さらに,これらのパラメータの最適化について検討し,精度の大幅な向上を観察する。
最悪の組み合わせと比較すると、SVMモデルは81.1%、80.6%、71.7%の精度を達成しており、それぞれケンブリッジ・COVID-19サウンド・データベース、コスクラデータセット、SVDデータセットの19.6%、16.10%、14.90%の改善がある。
関連論文リスト
- Intelligent Fault Diagnosis of Type and Severity in Low-Frequency, Low Bit-Depth Signals [0.6144680854063939]
この研究は、高パフォーマンスと低リソース消費のバランスをとることを目的として、不均衡なMaFaulDaデータセットの音声データを活用する。
精度は99.54%、F-Betaスコアは99.52%で、わずか6本の隆起木が8kHz、8ビット構成であった。
論文 参考訳(メタデータ) (2024-11-09T22:01:11Z) - COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals [0.6963971634605796]
本研究は、新型コロナウイルス検出における機械学習(ML)モデルの性能向上を図ることを目的としている。
MFCC(Mel Frequency Cepstral Coefficients)、クロマ(Chroma)、スペクトルコントラスト(Spectral Contrast)の3つの特徴抽出手法の有効性について検討し、2つの機械学習アルゴリズム、SVM(Support Vector Machine)とMLP(Multilayer Perceptron)に適用した。
提案システムでは,COUGHVIDデータセットでは0.843,Virufyでは0.953,最先端の分類性能を示す。
論文 参考訳(メタデータ) (2023-09-08T08:33:24Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - Lung Ultrasound Segmentation and Adaptation between COVID-19 and
Community-Acquired Pneumonia [0.17159130619349347]
深層ニューラルネットワークを用いた超音声的B線分割作業に着目する。
我々は、COVID-19とCAP肺超音波データの両方を用いて、ネットワークをトレーニングする。
いずれかのタイプの肺疾患を推測する際には、様々な臨床応用が期待できる。
論文 参考訳(メタデータ) (2021-08-06T14:17:51Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds [2.294014185517203]
ヒルベルト変換を肺音に適用することにより抽出される固有モード関数から統計的特徴を算出した。
喘息および健常者からの肺音の分類はDeep Belief Networks(DBN)を用いて行われる。
論文 参考訳(メタデータ) (2021-01-20T19:04:33Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
胸部CT画像に基づくCOVID-19分類のための適応的特徴選択ガイド付き深層林(AFS-DF)を提案する。
AFS-DF on COVID-19 data with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)。
論文 参考訳(メタデータ) (2020-05-07T06:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。