論文の概要: The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds
- arxiv url: http://arxiv.org/abs/2101.08288v1
- Date: Wed, 20 Jan 2021 19:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 03:50:45.561655
- Title: The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds
- Title(参考訳): hilbert-huang変換を用いた気管支喘息の診断と肺音の深層学習
- Authors: G\"okhan Altan, Yakup Kutlu, Adnan \"Ozhan Pekmezci, Serkan Nural
- Abstract要約: ヒルベルト変換を肺音に適用することにより抽出される固有モード関数から統計的特徴を算出した。
喘息および健常者からの肺音の分類はDeep Belief Networks(DBN)を用いて行われる。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung auscultation is the most effective and indispensable method for
diagnosing various respiratory disorders by using the sounds from the airways
during inspirium and exhalation using a stethoscope. In this study, the
statistical features are calculated from intrinsic mode functions that are
extracted by applying the HilbertHuang Transform to the lung sounds from 12
different auscultation regions on the chest and back. The classification of the
lung sounds from asthma and healthy subjects is performed using Deep Belief
Networks (DBN). The DBN classifier model with two hidden layers has been tested
using 5-fold cross validation method. The proposed DBN separated lung sounds
from asthmatic and healthy subjects with high classification performance rates
of 84.61%, 85.83%, and 77.11% for overall accuracy, sensitivity, and
selectivity, respectively using frequencytime analysis.
- Abstract(参考訳): 肺吸入時の気道からの音と聴診器による呼気を用いて様々な呼吸障害を診断するための最も効果的かつ必要不可欠な方法である。
本研究では,Hilbert Huang Transformを胸部および背部の12種類の聴診領域から肺音に適用することにより抽出した内在モード関数から統計的特徴を算出した。
喘息および健常者からの肺音の分類はDeep Belief Networks (DBN)を用いて行う。
2つの隠蔽層を持つDBN分類器モデルを5倍のクロスバリデーション法を用いて検証した。
提案したDBNは, 総精度, 感度, 選択性について, 高分類率84.61%, 85.83%, 77.11%の喘息患者と健常者とをそれぞれ周波数時間分析により分離した。
関連論文リスト
- Towards Enhanced Classification of Abnormal Lung sound in Multi-breath: A Light Weight Multi-label and Multi-head Attention Classification Method [0.0]
本研究は, 肺の異常な呼吸音を分類するための補助診断システムを開発することを目的とする。
既存の呼吸音データセットにおけるクラス不均衡と多様性の欠如の問題に対処するため,本研究では軽量で高精度なモデルを用いた。
論文 参考訳(メタデータ) (2024-07-15T15:40:02Z) - Abnormal Respiratory Sound Identification Using Audio-Spectrogram Vision Transformer [19.993594487490682]
AS-ViT法は3つの指標を用いて評価され、60:40分割比が79.1%、59.8%、80:20分割比が86.4%、69.3%となった。
提案手法は3つの指標を用いて評価し,60:40分割比79.1%,59.8%,80:20分割比86.4%,69.3%を得た。
論文 参考訳(メタデータ) (2024-05-14T06:31:38Z) - Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
本稿では、ソースドメインから異なるターゲットドメインに知識を転送するクロスドメイン適応手法を提案する。
特に、個々の領域として異なる聴診器タイプを考慮し、新しい聴診器誘導型教師付きコントラスト学習手法を提案する。
ICBHIデータセットの実験結果から,提案手法はドメイン依存性の低減とICBHIスコア61.71%の達成に有効であることが示された。
論文 参考訳(メタデータ) (2023-12-15T08:34:31Z) - COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals [0.6963971634605796]
本研究は、新型コロナウイルス検出における機械学習(ML)モデルの性能向上を図ることを目的としている。
MFCC(Mel Frequency Cepstral Coefficients)、クロマ(Chroma)、スペクトルコントラスト(Spectral Contrast)の3つの特徴抽出手法の有効性について検討し、2つの機械学習アルゴリズム、SVM(Support Vector Machine)とMLP(Multilayer Perceptron)に適用した。
提案システムでは,COUGHVIDデータセットでは0.843,Virufyでは0.953,最先端の分類性能を示す。
論文 参考訳(メタデータ) (2023-09-08T08:33:24Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
肺がんは世界中でがんの死因となっている。
現在の肺結節検出法は通常ドメイン固有である。
肺結節検出ネットワークの一般化能力を高めるために,スライスグループドメインアテンション(SGDA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-03-07T03:17:49Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
そこで我々は,BronchusNetという組込みフレームワークに先立って,正確な気管支分析を行うための領域と構造を提案する。
気管支分画のための適応型ハード領域対応UNetを提案する。
気管支枝の分類には,ハイブリッドな点-ボクセルグラフ学習モジュールを提案する。
論文 参考訳(メタデータ) (2022-05-14T02:32:33Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - Respiratory Sound Classification Using Long-Short Term Memory [62.997667081978825]
本稿では,呼吸器疾患の分類に関連して,音の分類を行おうとする際の問題点について検討する。
このようなタスクをどのように実装できるかを特定するために、ディープラーニングと長期短期記憶ネットワークの使用の検討を行う。
論文 参考訳(メタデータ) (2020-08-06T23:11:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。