PolyCL: Contrastive Learning for Polymer Representation Learning via Explicit and Implicit Augmentations
- URL: http://arxiv.org/abs/2408.07556v1
- Date: Wed, 14 Aug 2024 13:43:22 GMT
- Title: PolyCL: Contrastive Learning for Polymer Representation Learning via Explicit and Implicit Augmentations
- Authors: Jiajun Zhou, Yijie Yang, Austin M. Mroz, Kim E. Jelfs,
- Abstract summary: We present a self-supervised contrastive learning paradigm, PolyCL, for learning high-quality polymer representation without the need for labels.
Our model combines explicit and implicit augmentation strategies for improved learning performance.
- Score: 1.7695773264807546
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polymers play a crucial role in a wide array of applications due to their diverse and tunable properties. Establishing the relationship between polymer representations and their properties is crucial to the computational design and screening of potential polymers via machine learning. The quality of the representation significantly influences the effectiveness of these computational methods. Here, we present a self-supervised contrastive learning paradigm, PolyCL, for learning high-quality polymer representation without the need for labels. Our model combines explicit and implicit augmentation strategies for improved learning performance. The results demonstrate that our model achieves either better, or highly competitive, performances on transfer learning tasks as a feature extractor without an overcomplicated training strategy or hyperparameter optimisation. Further enhancing the efficacy of our model, we conducted extensive analyses on various augmentation combinations used in contrastive learning. This led to identifying the most effective combination to maximise PolyCL's performance.
Related papers
- Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models [18.02269664279028]
Transformers have found extensive applications across various domains due to the powerful fitting capabilities.
In this paper, we propose a novel category of composition of activations (PolyCom) designed to optimize the dynamics of transformers.
arXiv Detail & Related papers (2024-11-06T13:00:34Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - MLP-KAN: Unifying Deep Representation and Function Learning [7.634331640151854]
We introduce a unified method designed to eliminate the need for manual model selection.
By integrating Multi-Layer Perceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks (KANsogo) for function learning, we achieve remarkable results.
arXiv Detail & Related papers (2024-10-03T22:22:43Z) - Reinforcement Feature Transformation for Polymer Property Performance Prediction [22.87577374767465]
Existing machine learning models face challenges in effectively learning polymer representations due to low-quality polymer datasets.
This study focuses on improving polymer property performance prediction tasks by reconstructing an optimal and explainable descriptor representation space.
arXiv Detail & Related papers (2024-09-23T23:42:18Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
We propose Multimodal Contrastive Unsupervised Reinforcement Learning (M2CURL)
Our approach employs a novel multimodal self-supervised learning technique that learns efficient representations and contributes to faster convergence of RL algorithms.
We evaluate M2CURL on the Tactile Gym 2 simulator and we show that it significantly enhances the learning efficiency in different manipulation tasks.
arXiv Detail & Related papers (2024-01-30T14:09:35Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Extension of Transformational Machine Learning: Classification Problems [0.0]
This study explores the application and performance of Transformational Machine Learning (TML) in drug discovery.
TML, a meta learning algorithm, excels in exploiting common attributes across various domains.
The drug discovery process, which is complex and time-consuming, can benefit greatly from the enhanced prediction accuracy.
arXiv Detail & Related papers (2023-08-07T07:34:18Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.