MLP-KAN: Unifying Deep Representation and Function Learning
- URL: http://arxiv.org/abs/2410.03027v1
- Date: Thu, 3 Oct 2024 22:22:43 GMT
- Title: MLP-KAN: Unifying Deep Representation and Function Learning
- Authors: Yunhong He, Yifeng Xie, Zhengqing Yuan, Lichao Sun,
- Abstract summary: We introduce a unified method designed to eliminate the need for manual model selection.
By integrating Multi-Layer Perceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks (KANsogo) for function learning, we achieve remarkable results.
- Score: 7.634331640151854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in both representation learning and function learning have demonstrated substantial promise across diverse domains of artificial intelligence. However, the effective integration of these paradigms poses a significant challenge, particularly in cases where users must manually decide whether to apply a representation learning or function learning model based on dataset characteristics. To address this issue, we introduce MLP-KAN, a unified method designed to eliminate the need for manual model selection. By integrating Multi-Layer Perceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks (KANs) for function learning within a Mixture-of-Experts (MoE) architecture, MLP-KAN dynamically adapts to the specific characteristics of the task at hand, ensuring optimal performance. Embedded within a transformer-based framework, our work achieves remarkable results on four widely-used datasets across diverse domains. Extensive experimental evaluation demonstrates its superior versatility, delivering competitive performance across both deep representation and function learning tasks. These findings highlight the potential of MLP-KAN to simplify the model selection process, offering a comprehensive, adaptable solution across various domains. Our code and weights are available at \url{https://github.com/DLYuanGod/MLP-KAN}.
Related papers
- Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality [41.79433449873368]
We propose a novel multi-modal federated learning method, Federated Multi-modal contrastiVe training with Pre-trained completion (FedMVP)
FedMVP integrates the large-scale pre-trained models to enhance the federated training.
We demonstrate that the model achieves superior performance over two real-world image-text classification datasets.
arXiv Detail & Related papers (2024-06-16T19:18:06Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Adaptive Ensemble Learning: Boosting Model Performance through
Intelligent Feature Fusion in Deep Neural Networks [0.0]
We present an Adaptive Ensemble Learning framework that aims to boost the performance of deep neural networks.
The framework integrates ensemble learning strategies with deep learning architectures to create a more robust and adaptable model.
By leveraging intelligent feature fusion methods, the framework generates more discriminative and effective feature representations.
arXiv Detail & Related papers (2023-04-04T21:49:49Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Multi-Domain Learning by Meta-Learning: Taking Optimal Steps in
Multi-Domain Loss Landscapes by Inner-Loop Learning [5.490618192331097]
We consider a model-agnostic solution to the problem of Multi-Domain Learning for multi-modal applications.
Our method is model-agnostic, requiring no additional model parameters and no network architecture changes.
We demonstrate our solution to a fitting problem in medical imaging, specifically, in the automatic segmentation of white matter hyperintensity.
arXiv Detail & Related papers (2021-02-25T19:54:44Z) - Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining [37.2106265998237]
We propose an effective learning procedure named Meta Fine-Tuning (MFT)
MFT serves as a meta-learner to solve a group of similar NLP tasks for neural language models.
We implement MFT upon BERT to solve several multi-domain text mining tasks.
arXiv Detail & Related papers (2020-03-29T11:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.