TabularBench: Benchmarking Adversarial Robustness for Tabular Deep Learning in Real-world Use-cases
- URL: http://arxiv.org/abs/2408.07579v1
- Date: Wed, 14 Aug 2024 14:23:12 GMT
- Title: TabularBench: Benchmarking Adversarial Robustness for Tabular Deep Learning in Real-world Use-cases
- Authors: Thibault Simonetto, Salah Ghamizi, Maxime Cordy,
- Abstract summary: TabularBench is the first comprehensive benchmark of robustness of deep learning classification models.
We implement 7 robustification mechanisms inspired by state-of-the-art defenses in computer vision.
We curated real datasets for each use case, augmented with hundreds of thousands of realistic synthetic inputs.
- Score: 12.641656743760874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While adversarial robustness in computer vision is a mature research field, fewer researchers have tackled the evasion attacks against tabular deep learning, and even fewer investigated robustification mechanisms and reliable defenses. We hypothesize that this lag in the research on tabular adversarial attacks is in part due to the lack of standardized benchmarks. To fill this gap, we propose TabularBench, the first comprehensive benchmark of robustness of tabular deep learning classification models. We evaluated adversarial robustness with CAA, an ensemble of gradient and search attacks which was recently demonstrated as the most effective attack against a tabular model. In addition to our open benchmark (https://github.com/serval-uni-lu/tabularbench) where we welcome submissions of new models and defenses, we implement 7 robustification mechanisms inspired by state-of-the-art defenses in computer vision and propose the largest benchmark of robust tabular deep learning over 200 models across five critical scenarios in finance, healthcare and security. We curated real datasets for each use case, augmented with hundreds of thousands of realistic synthetic inputs, and trained and assessed our models with and without data augmentations. We open-source our library that provides API access to all our pre-trained robust tabular models, and the largest datasets of real and synthetic tabular inputs. Finally, we analyze the impact of various defenses on the robustness and provide actionable insights to design new defenses and robustification mechanisms.
Related papers
- Constrained Adaptive Attack: Effective Adversarial Attack Against Deep Neural Networks for Tabular Data [12.641656743760874]
We propose a gradient attack that overcomes the failures of existing gradient attacks with adaptive mechanisms.
We also design CAA, an efficient evasion attack that combines our CAPGD attack and MOEVA, the best search-based attack.
Our empirical study demonstrates that CAA outperforms all existing attacks in 17 over the 20 settings.
arXiv Detail & Related papers (2024-06-02T15:26:52Z) - Constrained Adaptive Attacks: Realistic Evaluation of Adversarial
Examples and Robust Training of Deep Neural Networks for Tabular Data [19.579837693614326]
We propose CAA, the first efficient evasion attack for constrained deep learning models.
We leverage CAA to build a benchmark of deep tabular models across three popular use cases: credit scoring, phishing and botnet attacks detection.
arXiv Detail & Related papers (2023-11-08T07:35:28Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
Given the escalating risks of malicious attacks in the finance sector, understanding adversarial strategies and robust defense mechanisms for machine learning models is critical.
We aim to investigate the current state and dynamics of adversarial attacks and defenses for neural network models that use sequential financial data as the input.
We have designed a competition that allows realistic and detailed investigation of problems in modern financial transaction data.
The participants compete directly against each other, so possible attacks and defenses are examined in close-to-real-life conditions.
arXiv Detail & Related papers (2023-08-22T12:53:09Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - A Comprehensive Evaluation Framework for Deep Model Robustness [44.20580847861682]
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications.
They are vulnerable to adversarial examples, which motivates the adversarial defense.
This paper presents a model evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics.
arXiv Detail & Related papers (2021-01-24T01:04:25Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
arXiv Detail & Related papers (2020-11-28T00:08:45Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Benchmarking Robustness of Machine Reading Comprehension Models [29.659586787812106]
We construct AdvRACE, a new model-agnostic benchmark for evaluating the robustness of MRC models under four different types of adversarial attacks.
We show that state-of-the-art (SOTA) models are vulnerable to all of these attacks.
We conclude that there is substantial room for building more robust MRC models and our benchmark can help motivate and measure progress in this area.
arXiv Detail & Related papers (2020-04-29T08:05:32Z) - RAB: Provable Robustness Against Backdoor Attacks [20.702977915926787]
We focus on certifying the machine learning model robustness against general threat models, especially backdoor attacks.
We propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks.
We conduct comprehensive experiments for different machine learning (ML) models and provide the first benchmark for certified robustness against backdoor attacks.
arXiv Detail & Related papers (2020-03-19T17:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.