Quantifying over Optimum Answer Sets
- URL: http://arxiv.org/abs/2408.07697v1
- Date: Wed, 14 Aug 2024 17:53:13 GMT
- Title: Quantifying over Optimum Answer Sets
- Authors: Giuseppe Mazzotta, Francesco Ricca, Mirek Truszczynski,
- Abstract summary: ASP(Q) lacks a method for encoding modeling in an elegant and compact way.
We propose an extension of ASP(Q) in which component programs may contain weak constraints.
We showcase the modeling capabilities of the new formalism through various application scenarios.
- Score: 6.390468088226495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answer Set Programming with Quantifiers (ASP(Q)) has been introduced to provide a natural extension of ASP modeling to problems in the polynomial hierarchy (PH). However, ASP(Q) lacks a method for encoding in an elegant and compact way problems requiring a polynomial number of calls to an oracle in $\Sigma_n^p$ (that is, problems in $\Delta_{n+1}^p$). Such problems include, in particular, optimization problems. In this paper we propose an extension of ASP(Q), in which component programs may contain weak constraints. Weak constraints can be used both for expressing local optimization within quantified component programs and for modeling global optimization criteria. We showcase the modeling capabilities of the new formalism through various application scenarios. Further, we study its computational properties obtaining complexity results and unveiling non-obvious characteristics of ASP(Q) programs with weak constraints.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - An efficient solver for ASP(Q) [4.198045959496482]
ASP(Q) extends Answer Set Programming (ASP) to allow for declarative and modular modeling of problems from the hierarchy.
We present a new implementation that builds on the ideas of qasp and features both a more efficient encoding procedure and new optimized encodings of ASP(Q) programs in QBF.
arXiv Detail & Related papers (2023-05-17T07:59:53Z) - Conjunctive Query Based Constraint Solving For Feature Model
Configuration [79.14348940034351]
We show how to apply conjunctive queries to solve constraint satisfaction problems.
This approach allows the application of a wide-spread database technology to solve configuration tasks.
arXiv Detail & Related papers (2023-04-26T10:08:07Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming [0.0]
We introduce a new model-oriented Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints.
After targeting simple problems, we aim to extend our method to be applied also for advanced decision problems.
arXiv Detail & Related papers (2022-08-05T10:50:03Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
We introduce a new model-oriented approach for Answer Set Programming that lifts the Symmetry Breaking Constraints into a set of interpretable first-order constraints.
Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs.
arXiv Detail & Related papers (2021-12-22T11:27:48Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - ASP(AC): Answer Set Programming with Algebraic Constraints [20.559497209595822]
We introduce Answer Set Programming with Algebraic Constraints (ASP(AC)), where rules may contain constraints that compare semiring values to weighted formula evaluations.
This work is under consideration for acceptance in Theory and Practice of Logic Programming.
arXiv Detail & Related papers (2020-08-10T10:20:49Z) - An ASP semantics for Constraints involving Conditional Aggregates [9.289905977910378]
We elaborate upon the formal foundations of hybrid Answer Set Programming (ASP)
We extend its underlying logical framework with aggregate functions over constraint values and variables.
We put some emphasis on logic programs with linear constraints and show how common ASP aggregates can be regarded as particular cases of so-called conditional linear constraints.
arXiv Detail & Related papers (2020-02-17T12:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.