論文の概要: Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors
- arxiv url: http://arxiv.org/abs/2408.07734v1
- Date: Wed, 14 Aug 2024 17:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:59:30.696357
- Title: Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors
- Title(参考訳): CMOS 28nmにおけるアナログスパイクニューロンの大規模神経形プロセッサへの応用
- Authors: Marwan Besrour, Jacob Lavoie, Takwa Omrani, Gabriel Martin-Hardy, Esmaeil Ranjbar Koleibi, Jeremy Menard, Konin Koua, Philippe Marcoux, Mounir Boukadoum, Rejean Fontaine,
- Abstract要約: 本研究では,TSMCの28nmCMOS技術を用いた低消費電力Leaky Integrate- and-Fireニューロンの設計を提案する。
製造されたニューロンは1.61 fJ/スパイクを消費し、34$mu m2$の活性領域を占有し、最大スパイク周波数は250mVで300kHzである。
- 参考スコア(独自算出の注目度): 0.8426358786287627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational complexity of deep learning algorithms has given rise to significant speed and memory challenges for the execution hardware. In energy-limited portable devices, highly efficient processing platforms are indispensable for reproducing the prowess afforded by much bulkier processing platforms. In this work, we present a low-power Leaky Integrate-and-Fire (LIF) neuron design fabricated in TSMC's 28 nm CMOS technology as proof of concept to build an energy-efficient mixed-signal Neuromorphic System-on-Chip (NeuroSoC). The fabricated neuron consumes 1.61 fJ/spike and occupies an active area of 34 $\mu m^{2}$, leading to a maximum spiking frequency of 300 kHz at 250 mV power supply. These performances are used in a software model to emulate the dynamics of a Spiking Neural Network (SNN). Employing supervised backpropagation and a surrogate gradient technique, the resulting accuracy on the MNIST dataset, using 4-bit post-training quantization stands at 82.5\%. The approach underscores the potential of such ASIC implementation of quantized SNNs to deliver high-performance, energy-efficient solutions to various embedded machine-learning applications.
- Abstract(参考訳): ディープラーニングアルゴリズムの計算複雑性は、実行ハードウェアにおいて、大幅なスピードとメモリの問題を引き起こしている。
エネルギーに制限されたポータブルデバイスでは、よりバルクな処理プラットフォームで得られる技術を再現するために、高効率な処理プラットフォームが不可欠である。
本研究では、エネルギー効率の良い混合信号型ニューロモルフィックシステム(NeuroSoC)を構築するための概念実証として、TSMCの28nmCMOS技術で作製された低消費電力Leaky Integrate-and-Fire(LIF)ニューロンについて述べる。
製造されたニューロンは1.61fJ/スパイクを消費し、34$\mu m^{2}$の活性領域を占有し、最大スパイク周波数は250mVで300kHzである。
これらの性能は、スパイキングニューラルネットワーク(SNN)の力学をエミュレートするソフトウェアモデルで使用される。
教師付きバックプロパゲーションとサロゲート勾配法を用いることで、MNISTデータセット上の4ビット後量子化の精度は82.5\%である。
このアプローチは、様々な組み込み機械学習アプリケーションに高性能でエネルギー効率の良いソリューションを提供するために、量子化されたSNNのASIC実装の可能性を強調している。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Mem-elements based Neuromorphic Hardware for Neural Network Application [0.0]
この論文は、低消費電力の機械学習アクセラレーターにおけるmemristiveとmemcapacitiveのクロスバーアレイの利用を調査し、ディープニューラルネットワーク(DNN)のための包括的な共設計フレームワークを提供する。
このモデルは、PythonとPyTorchのハイブリッドアプローチによって実装され、8層VGGネットワーク上のメモリとメモリ容量のクロスバーアレイを備えたCIFAR-10データセットに対して、例外的なトレーニング精度90.02%と91.03%を達成した。
論文 参考訳(メタデータ) (2024-03-05T14:28:40Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - THOR -- A Neuromorphic Processor with 7.29G TSOP$^2$/mm$^2$Js
Energy-Throughput Efficiency [2.260725478207432]
生物学的にインスパイアされたスパイキングニューラルネットワーク(SNN)を用いたニューロモルフィックコンピューティングは、エッジコンピューティングデバイスに必要なエネルギ・スループ(ET)効率を満たすための有望なソリューションである。
我々は、エネルギー消費とスループットのボトルネックに対処する新しいメモリ階層とニューロン更新アーキテクチャを備えた全デジタルニューロモルフィックプロセッサTHORを提案する。
論文 参考訳(メタデータ) (2022-12-03T21:36:29Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパイクタイピング依存の可塑性(STDP)ルールのために教師なし学習機能を提供する。
しかし、最先端のSNNは高い精度を達成するために大きなメモリフットプリントを必要とする。
トレーニングおよび推論処理のためのメモリ効率とエネルギー効率のよいSNNを得るための最適化フレームワークFSpiNNを提案する。
論文 参考訳(メタデータ) (2020-07-17T09:40:26Z) - A 28-nm Convolutional Neuromorphic Processor Enabling Online Learning
with Spike-Based Retinas [1.4425878137951236]
適応エッジコンピューティングとビジョンアプリケーションのための28nmイベント駆動CNN(eCNN)であるSPOONを提案する。
16.8-%のパワーと11.8-%のオーバヘッドしか持たないオンライン学習を、生物学的に証明可能な直接ランダムターゲットプロジェクション(DRTP)アルゴリズムで埋め込んでいる。
0.6Vでの313nJの分類あたりのエネルギーと95.3%(オンチップトレーニング)と97.5%(オフチップトレーニング)のアキュラシーに対する0.32-mm$2$の面積で、SPOONが従来の機械学習アクセラレータの効率に達することを示した。
論文 参考訳(メタデータ) (2020-05-13T13:47:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。