論文の概要: Zero Day Ransomware Detection with Pulse: Function Classification with Transformer Models and Assembly Language
- arxiv url: http://arxiv.org/abs/2408.07862v1
- Date: Thu, 15 Aug 2024 00:22:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:28:57.396917
- Title: Zero Day Ransomware Detection with Pulse: Function Classification with Transformer Models and Assembly Language
- Title(参考訳): パルスによるゼロデイランサムウェア検出:トランスフォーマーモデルとアセンブリ言語を用いた関数分類
- Authors: Matthew Gaber, Mohiuddin Ahmed, Helge Janicke,
- Abstract要約: 動的バイナリー・インスツルメンテーション(Dynamic Binary Instrumentation)ツールであるPeekabooは、回避マルウェアを倒して、その真の振る舞いを捉えている。
本稿では,Transformerモデルとアセンブリ言語を用いたゼロデイランサムウェア検出のための新しいフレームワークであるPulseを提案する。
- 参考スコア(独自算出の注目度): 1.870031206586792
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Finding automated AI techniques to proactively defend against malware has become increasingly critical. The ability of an AI model to correctly classify novel malware is dependent on the quality of the features it is trained with and the authenticity of the features is dependent on the analysis tool. Peekaboo, a Dynamic Binary Instrumentation tool defeats evasive malware to capture its genuine behavior. The ransomware Assembly instructions captured by Peekaboo, follow Zipf's law, a principle also observed in natural languages, indicating Transformer models are particularly well suited to binary classification. We propose Pulse, a novel framework for zero day ransomware detection with Transformer models and Assembly language. Pulse, trained with the Peekaboo ransomware and benign software data, uniquely identify truly new samples with high accuracy. Pulse eliminates any familiar functionality across the test and training samples, forcing the Transformer model to detect malicious behavior based solely on context and novel Assembly instruction combinations.
- Abstract(参考訳): マルウェアに対して積極的に防御する自動化AI技術を見つけることはますます重要になっている。
新たなマルウェアを正しく分類するAIモデルの能力は、トレーニングされた機能の品質に依存し、その機能の信頼性は分析ツールに依存している。
動的バイナリー・インスツルメンテーション(Dynamic Binary Instrumentation)ツールであるPeekabooは、回避マルウェアを倒して、その真の振る舞いを捉えている。
Peekaboo が取得したランサムウェアアセンブリ命令は Zipf の法則に従っており、これは自然言語でも見られる原理であり、トランスフォーマーモデルは特に二項分類に適していることを示している。
本稿では,Transformerモデルとアセンブリ言語を用いたゼロデイランサムウェア検出のための新しいフレームワークであるPulseを提案する。
PulseはPeekabooのランサムウェアと良質なソフトウェアデータで訓練され、真に新しいサンプルを高精度に識別する。
Pulseは、テストとトレーニングサンプルに精通した機能を排除し、Transformerモデルにコンテキストと新しいアセンブリ命令の組み合わせのみに基づいて悪意のある振る舞いを検出するように強制する。
関連論文リスト
- Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
本稿では,高度に正確で軽量で解釈可能な,難読化マルウェアを検出する機械学習システムを提案する。
本システムでは,1つのマルウェアサブタイプ,すなわちSpywareファミリーのTransponderでのみ訓練されているにもかかわらず,15種類のマルウェアサブタイプを検出することができる。
トランスポンダー中心のモデルは99.8%を超え、平均処理速度はファイルあたり5.7マイクロ秒であった。
論文 参考訳(メタデータ) (2024-07-07T12:41:40Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - A Comparison of Adversarial Learning Techniques for Malware Detection [1.2289361708127875]
我々は、勾配に基づく、進化的アルゴリズムに基づく、強化に基づく手法を用いて、敵対的なサンプルを生成する。
実験により,強化学習手法を用いたGymマルウェア生成装置が最も実用性が高いことが示された。
論文 参考訳(メタデータ) (2023-08-19T09:22:32Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
既存のマルウェア検出方法は、既存の悪意のあるサンプルのみを対象としている。
本稿では,マルウェアとその変異を効率的に検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T03:20:34Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - MalBERT: Using Transformers for Cybersecurity and Malicious Software
Detection [0.0]
注意に基づくディープラーニング技術のカテゴリであるtransformersは、最近、さまざまなタスクを解決する素晴らしい結果を示している。
本研究では,android アプリケーションのソースコードの静的解析を行う bert (bi representations from transformers) に基づくモデルを提案する。
得られた結果は、悪意のあるソフトウェア検出のためのTransformerベースのモデルによって得られた高い性能を示す。
論文 参考訳(メタデータ) (2021-03-05T17:09:46Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。