論文の概要: A Systematic Evaluation of Generated Time Series and Their Effects in Self-Supervised Pretraining
- arxiv url: http://arxiv.org/abs/2408.07869v1
- Date: Thu, 15 Aug 2024 00:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:19:12.900977
- Title: A Systematic Evaluation of Generated Time Series and Their Effects in Self-Supervised Pretraining
- Title(参考訳): 生成時系列の体系的評価と自己監督型事前訓練における効果
- Authors: Audrey Der, Chin-Chia Michael Yeh, Xin Dai, Huiyuan Chen, Yan Zheng, Yujie Fan, Zhongfang Zhuang, Vivian Lai, Junpeng Wang, Liang Wang, Wei Zhang, Eamonn Keogh,
- Abstract要約: 自己教師付き事前訓練モデル(PTM)は、コンピュータビジョンと自然言語処理タスクにおいて顕著な性能を示した。
実験では、ほとんどの自己教師付き時系列PTMは、単純な教師付きモデルによって超えられた。
以上の結果から,実データ事前学習セットを大量のサンプルのみに置き換えることで,顕著な改善が得られた。
- 参考スコア(独自算出の注目度): 34.99623416888207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised Pretrained Models (PTMs) have demonstrated remarkable performance in computer vision and natural language processing tasks. These successes have prompted researchers to design PTMs for time series data. In our experiments, most self-supervised time series PTMs were surpassed by simple supervised models. We hypothesize this undesired phenomenon may be caused by data scarcity. In response, we test six time series generation methods, use the generated data in pretraining in lieu of the real data, and examine the effects on classification performance. Our results indicate that replacing a real-data pretraining set with a greater volume of only generated samples produces noticeable improvement.
- Abstract(参考訳): 自己教師付き事前訓練モデル(PTM)は、コンピュータビジョンと自然言語処理タスクにおいて顕著な性能を示した。
これらの成功により、研究者は時系列データのためのPTMを設計するようになった。
実験では、ほとんどの自己教師付き時系列PTMは、単純な教師付きモデルによって超えられた。
我々は、この望ましくない現象はデータ不足によって引き起こされるかもしれないと仮定する。
そこで本研究では,6つの時系列生成手法を検証し,実データの代わりに生成したデータを用いて,分類性能に与える影響を検証した。
以上の結果から,実データ事前学習セットを大量のサンプルのみに置き換えることで,顕著な改善が得られた。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Probing the Robustness of Time-series Forecasting Models with
CounterfacTS [1.823020744088554]
我々は,時系列予測タスクにおけるディープラーニングモデルの堅牢性を調査するツールであるCounterfacTSを提示し,公開する。
CounterfacTSにはユーザフレンドリーなインターフェースがあり、時系列データとその予測を視覚化、比較、定量化することができる。
論文 参考訳(メタデータ) (2024-03-06T07:34:47Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Examining the Effect of Pre-training on Time Series Classification [21.38211396933795]
本研究では, プレトレーニング後の微調整が微調整過程に及ぼす影響について検討した。
150の分類データセットを網羅的に検討した。
事前学習は、データに適合しないモデルの最適化プロセスを改善するのにしか役立ちません。
事前学習データを追加することで一般化は向上しないが、元のデータボリュームの事前学習の利点を強化することができる。
論文 参考訳(メタデータ) (2023-09-11T06:26:57Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Quantifying Quality of Class-Conditional Generative Models in
Time-Series Domain [4.219228636765818]
Inception Time Score(ITS)とFrechet Inception Time Distance(FITD)を導入し、時系列領域におけるクラス条件生成モデルの質的性能を評価する。
提案した指標の識別能力を調べるため,80種類のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-14T08:13:20Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
自己教師付き事前トレーニングには、高価で長い計算と大量のデータが必要で、データ拡張に敏感である。
本稿では,既存の事前学習モデルを用いて事前学習プロセスを初期化することにより,収束時間を短縮し,精度を向上させる階層的事前学習(HPT)について検討する。
HPTが最大80倍速く収束し、タスク全体の精度が向上し、自己監視された事前トレーニングプロセスの堅牢性が、画像増強ポリシーまたは事前トレーニングデータの量の変化に改善されることを示します。
論文 参考訳(メタデータ) (2021-03-23T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。