Intensity correlations in measurement-device-independent quantum key distribution
- URL: http://arxiv.org/abs/2408.08011v3
- Date: Sun, 6 Oct 2024 13:29:27 GMT
- Title: Intensity correlations in measurement-device-independent quantum key distribution
- Authors: Junxuan Liu, Tianyi Xing, Ruiyin Liu, Zihao Chen, Hao Tan, Anqi Huang,
- Abstract summary: We propose a theoretical model that quantitatively analyzes the secure key rate of MDI QKD systems under intensity correlations.
We apply the theoretical model to a practical MDI QKD system with measured intensity correlations, which shows that the system struggles to generate keys efficiently under this model.
This study extends the security analysis of intensity correlations to MDI QKD protocols, providing a methodology to evaluate the practical security of MDI QKD systems.
- Score: 14.152870073879834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The intensity correlations due to imperfect modulation during the quantum-state preparation in a measurement-device-independent quantum key distribution (MDI QKD) system compromise its security performance. Therefore, it is crucial to assess the impact of intensity correlations on the practical security of MDI QKD systems. In this work, we propose a theoretical model that quantitatively analyzes the secure key rate of MDI QKD systems under intensity correlations. Furthermore, we apply the theoretical model to a practical MDI QKD system with measured intensity correlations, which shows that the system struggles to generate keys efficiently under this model. We also explore the boundary conditions of intensity correlations to generate secret keys. This study extends the security analysis of intensity correlations to MDI QKD protocols, providing a methodology to evaluate the practical security of MDI QKD systems.
Related papers
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.
We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - Quantum key distribution overcoming practical correlated intensity fluctuations [11.207894122345138]
Intensity correlations between neighboring pulses open a prevalent yet often overlooked security loophole in decoy-state quantum key distribution (QKD)
We present and experimentally demonstrate an intensity-correlation-tolerant QKD protocol that mitigates the negative effect that this phenomenon has on the secret key rate.
arXiv Detail & Related papers (2025-01-23T08:56:26Z) - High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality [105.73011353120471]
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
arXiv Detail & Related papers (2025-01-21T11:03:59Z) - Development and Justification of a Physical Layer Model Based on Monitoring Data for Quantum Key Distribution [0.0]
Quantum Key Distribution (QKD) is a promising technique for ensuring long-term security in communication systems.
This thesis addresses the practical imperfections of QKD systems, such as low and fluctuating Secret Key Rates (SKR) and unstable performance.
arXiv Detail & Related papers (2024-12-10T17:25:20Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - Characterization of Intensity Correlation via Single-photon Detection in Quantum Key Distribution [10.02327858833847]
One of the most significant vulnerabilities in the source unit of quantum key distribution (QKD) is the correlation between quantum states after modulation.
We propose a methodology to characterize the intensity correlation according to the single-photon detection results in the measurement unit.
arXiv Detail & Related papers (2024-08-15T06:13:20Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Security of decoy-state quantum key distribution with correlated
intensity fluctuations [0.0]
Current decoy-state QKD setups operate at GHz repetition rates.
memory effects in the modulators and electronics that control them create correlations between the intensities of the emitted pulses.
This translates into information leakage about the selected intensities.
arXiv Detail & Related papers (2022-06-14T09:05:41Z) - Experimental measurement-device-independent type quantum key
distribution with flawed and correlated sources [14.143874849657317]
Security of quantum key distribution (QKD) is threatened by discrepancies between realistic devices and theoretical assumptions.
Here, we adopt the reference technique to prove security of an efficient four-phase measurement-device-independent QKD using laser pulses against potential source imperfections.
In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 253 bps with a 20 dB channel loss.
arXiv Detail & Related papers (2022-04-18T13:44:51Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.