論文の概要: Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging
- arxiv url: http://arxiv.org/abs/2408.08058v1
- Date: Thu, 15 Aug 2024 09:55:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:16:19.035455
- Title: Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging
- Title(参考訳): 基礎モデルを用いたデータスカシティのナビゲーション:医療画像におけるFew-ShotとZero-Shot学習アプローチのベンチマーク
- Authors: Stefano Woerner, Christian F. Baumgartner,
- Abstract要約: データ不足は、現代の機械学習技術を臨床タスクに適用するための大きな制限要因である。
我々は,19種類の医用画像データセットを用いた16の事前訓練基礎モデルを用いて,少数ショット学習とゼロショット学習のベンチマーク研究を行った。
以上の結果から,医療データのみに事前訓練されたBiomedCLIPは,非常に小さなトレーニングセットサイズにおいて,平均して最高の成績を示した。
- 参考スコア(独自算出の注目度): 1.533133219129073
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Data scarcity is a major limiting factor for applying modern machine learning techniques to clinical tasks. Although sufficient data exists for some well-studied medical tasks, there remains a long tail of clinically relevant tasks with poor data availability. Recently, numerous foundation models have demonstrated high suitability for few-shot learning (FSL) and zero-shot learning (ZSL), potentially making them more accessible to practitioners. However, it remains unclear which foundation model performs best on FSL medical image analysis tasks and what the optimal methods are for learning from limited data. We conducted a comprehensive benchmark study of ZSL and FSL using 16 pretrained foundation models on 19 diverse medical imaging datasets. Our results indicate that BiomedCLIP, a model pretrained exclusively on medical data, performs best on average for very small training set sizes, while very large CLIP models pretrained on LAION-2B perform best with slightly more training samples. However, simply fine-tuning a ResNet-18 pretrained on ImageNet performs similarly with more than five training examples per class. Our findings also highlight the need for further research on foundation models specifically tailored for medical applications and the collection of more datasets to train these models.
- Abstract(参考訳): データ不足は、現代の機械学習技術を臨床タスクに適用するための大きな制限要因である。
十分に研究された医療タスクには十分なデータが存在しているが、データ可用性が低い臨床関連タスクの長い部分がある。
近年,ファウンデーションモデルはFSLやゼロショット学習(ZSL)に高い適合性を示しており,実践者にとってより使いやすくなっている。
しかし、FSLの医用画像解析タスクにおいてどの基盤モデルが優れているか、限られたデータから学習する上で最適な方法が何かは定かではない。
ZSLとFSLの総合的なベンチマークを,19種類の医用画像データセットを用いた16の事前訓練基礎モデルを用いて行った。
以上の結果から,医療データのみに事前トレーニングされたBiomedCLIPは,非常に小さなトレーニングセットサイズで平均最高であり,LAION-2Bで事前トレーニングされた非常に大きなCLIPモデルは,わずかにトレーニングサンプルで最良であることがわかった。
しかし、ImageNetで事前訓練されたResNet-18の微調整は、クラス毎に5つ以上のトレーニング例でも同様に実行される。
また、医療応用に適した基礎モデルや、これらのモデルをトレーニングするためのデータセットの収集について、さらなる研究の必要性も浮き彫りにしています。
関連論文リスト
- Towards Scalable Foundation Models for Digital Dermatology [35.62296620281727]
我々は、24万以上の皮膚画像のデータセット上で、自己教師付き学習(SSL)技術を用いてモデルを事前訓練する。
以上の結果から,本研究で事前訓練したモデルは汎用モデルを上回るだけでなく,臨床関連診断タスクにおける50倍のモデルの性能にもアプローチすることが示唆された。
論文 参考訳(メタデータ) (2024-11-08T12:19:20Z) - Text-guided Foundation Model Adaptation for Long-Tailed Medical Image Classification [4.6651139122498]
医学的文脈では、まれな疾患のラベルの少ない長いデータセットにおける不均衡なデータ分布は、ディープラーニングモデルの診断精度を著しく損なう。
最近のマルチモーダルテキスト画像管理基盤モデルは、効率的な表現学習を通じて、データの不足に対する新しい解決策を提供する。
長期医療画像分類のための新しいテキスト誘導基礎モデル適応法(TFA-LT)を提案する。
提案手法は27.1%の精度向上を実現し,本領域における基礎モデル適用の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-27T04:18:18Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - Federated Learning of Medical Concepts Embedding using BEHRT [0.0]
医療概念の埋め込み学習のための連合学習手法を提案する。
我々のアプローチは、EHRのディープニューラルネットワークモデルであるBEHRTのような埋め込みモデルに基づいている。
我々は、FLで訓練されたモデルと集中型データで訓練されたモデルのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2023-05-22T14:05:39Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Generative Transfer Learning: Covid-19 Classification with a few Chest
X-ray Images [0.0]
深層学習モデルは解釈を迅速化し、人間の専門家の仕事を軽減することができる。
Deep Transfer Learningは、パブリックドメインで事前訓練されたモデルを使用することで、この問題に対処する。
本稿では,既存の大規模事前学習モデルと同様に,単一の概念に基づいて事前学習した簡易な生成源モデルを提案する。
論文 参考訳(メタデータ) (2022-08-10T12:37:52Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。