論文の概要: Rethinking Foundation Models for Medical Image Classification through a Benchmark Study on MedMNIST
- arxiv url: http://arxiv.org/abs/2501.14685v1
- Date: Fri, 24 Jan 2025 18:01:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:43.934777
- Title: Rethinking Foundation Models for Medical Image Classification through a Benchmark Study on MedMNIST
- Title(参考訳): MedMNISTのベンチマークによる医用画像分類の基礎モデルの再考
- Authors: Fuping Wu, Bartlomiej W. Papiez,
- Abstract要約: 医用画像分類タスクにおける基礎モデルの有用性について,MedMNISTデータセットのベンチマークによる検討を行った。
我々は畳み込みモデルからトランスフォーマーモデルまで様々な基礎モデルを採用し、すべての分類タスクに対してエンドツーエンドのトレーニングと線形探索の両方を実装している。
- 参考スコア(独自算出の注目度): 7.017817009055001
- License:
- Abstract: Foundation models are widely employed in medical image analysis, due to their high adaptability and generalizability for downstream tasks. With the increasing number of foundation models being released, model selection has become an important issue. In this work, we study the capabilities of foundation models in medical image classification tasks by conducting a benchmark study on the MedMNIST dataset. Specifically, we adopt various foundation models ranging from convolutional to Transformer-based models and implement both end-to-end training and linear probing for all classification tasks. The results demonstrate the significant potential of these pre-trained models when transferred for medical image classification. We further conduct experiments with different image sizes and various sizes of training data. By analyzing all the results, we provide preliminary, yet useful insights and conclusions on this topic.
- Abstract(参考訳): 基礎モデルは、下流タスクに対する高い適応性と一般化性のために、医用画像解析に広く採用されている。
ファンデーションモデルのリリースの増加に伴い、モデル選択は重要な問題となっている。
本稿では,MedMNISTデータセットのベンチマーク研究により,医用画像分類タスクにおける基礎モデルの有効性について検討する。
具体的には、畳み込みモデルからトランスフォーマーモデルまで様々な基礎モデルを採用し、すべての分類タスクに対してエンドツーエンドトレーニングと線形探索の両方を実装している。
以上の結果から, 医用画像分類における事前訓練モデルの有用性が示唆された。
さらに、異なる画像サイズと様々なトレーニングデータを用いて実験を行う。
すべての結果を分析することで、このトピックに関する予備的かつ有用な洞察と結論を提供する。
関連論文リスト
- Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Overcoming Data Scarcity in Biomedical Imaging with a Foundational
Multi-Task Model [2.5994154212235685]
大規模に事前訓練された基礎モデルは、医療以外の領域でかなりの成功を収めている。
本稿では,メモリ要件からトレーニングタスク数を分離するマルチタスク学習戦略を提案する。
論文 参考訳(メタデータ) (2023-11-16T12:20:25Z) - Are Natural Domain Foundation Models Useful for Medical Image
Classification? [2.7652948339147807]
確立された4つの医用画像データセットを対象とした5つの基礎モデルの性能評価を行った。
DINOv2は、ImageNet事前トレーニングの標準プラクティスを一貫して上回っている。
他の基盤モデルは、医療画像分類タスクへの転送可能性の限界を示す、この確立されたベースラインを一貫して打ち負かさなかった。
論文 参考訳(メタデータ) (2023-10-30T13:21:56Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
ファンデーションモデルは、広範囲の下流タスクに適応した大規模で事前訓練されたディープラーニングモデルである。
これらのモデルは、コンテキスト推論、一般化、テスト時の迅速な機能を促進する。
コンピュータビジョンの進歩に乗じて、医療画像はこれらのモデルへの関心も高まっている。
論文 参考訳(メタデータ) (2023-10-28T12:08:12Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
医療画像セグメンテーションのための基盤モデルUniverSegについて考察する。
本研究では,前立腺画像の文脈における経験的評価研究を行い,従来のタスク固有セグメンテーションモデルの訓練手法と比較する。
論文 参考訳(メタデータ) (2023-07-06T20:00:52Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。