論文の概要: MedMamba: Vision Mamba for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2403.03849v5
- Date: Sun, 29 Sep 2024 03:55:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:37.878440
- Title: MedMamba: Vision Mamba for Medical Image Classification
- Title(参考訳): MedMamba:Vision Mamba for Medical Image Classification (動画)
- Authors: Yubiao Yue, Zhenzhang Li,
- Abstract要約: 視覚変換器(ViT)と畳み込みニューラルネットワーク(CNN)は医療画像分類タスクで広く研究され、広く利用されている。
近年の研究では、マンバで表される状態空間モデル(SSM)が、長距離依存を効果的にモデル化できることが示されている。
我々は、医用画像の一般的な分類のための最初のビジョンマンバであるメドマンバを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Since the era of deep learning, convolutional neural networks (CNNs) and vision transformers (ViTs) have been extensively studied and widely used in medical image classification tasks. Unfortunately, CNN's limitations in modeling long-range dependencies result in poor classification performances. In contrast, ViTs are hampered by the quadratic computational complexity of their self-attention mechanism, making them difficult to deploy in real-world settings with limited computational resources. Recent studies have shown that state space models (SSMs) represented by Mamba can effectively model long-range dependencies while maintaining linear computational complexity. Inspired by it, we proposed MedMamba, the first Vision Mamba for generalized medical image classification. Concretely, we introduced a novel hybrid basic block named SS-Conv-SSM, which purely integrates the convolutional layers for extracting local features with the abilities of SSM to capture long-range dependencies, aiming to model medical images from different image modalities efficiently. By employing the grouped convolution strategy and channel-shuffle operation, MedMamba successfully provides fewer model parameters and a lower computational burden for efficient applications without sacrificing accuracy. We thoroughly evaluated MedMamba using 16 datasets containing ten imaging modalities and 411,007 images. Experimental results show that MedMamba demonstrates competitive performance on most tasks compared with the state-of-the-art methods. This work aims to explore the potential of Vision Mamba and establish a new baseline for medical image classification, thereby providing valuable insights for developing more powerful Mamba-based artificial intelligence algorithms and applications in medicine. The source codes and all pre-trained weights of MedMamba are available at https://github.com/YubiaoYue/MedMamba.
- Abstract(参考訳): ディープラーニングの時代から、畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)が医学画像分類タスクで広く研究され、広く利用されている。
残念なことに、CNNの長距離依存のモデリングにおける制限は、分類性能の低下をもたらす。
対照的に、ViTは自己保持機構の2次計算複雑性によって妨げられ、限られた計算資源を持つ現実の環境でのデプロイが困難になる。
近年の研究では、Mambaによって表現される状態空間モデル(SSM)は、線形計算複雑性を維持しながら、効果的に長距離依存をモデル化できることが示されている。
そこで我々は,医用画像の一般的な分類のための最初のビジョンマンバであるメドマンバを提案した。
具体的には,SS-Conv-SSMという,局所的な特徴を抽出する畳み込み層とSSMの長大な依存関係をキャプチャする機能を純粋に統合するハイブリッド・ベーシックブロックを導入する。
グループ化された畳み込み戦略とチャネルシャッフル演算を用いることで、MedMambaは精度を犠牲にすることなく、効率的なアプリケーションに対してより少ないモデルパラメータと少ない計算負担を提供することに成功した。
10つの画像モダリティと411,007の画像を含む16のデータセットを用いて,MedMambaを徹底的に評価した。
実験結果から,MedMambaは最先端手法と比較して,ほとんどのタスクにおいて競合性能を示すことがわかった。
この研究は、Vision Mambaの可能性を探究し、医療画像分類の新しいベースラインを確立することを目的としている。
MedMambaのソースコードとトレーニング済み重量はすべてhttps://github.com/YubiaoYue/MedMamba.comで入手できる。
関連論文リスト
- Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution [7.97504951029884]
医用画像超解像のための自己優先型マンバ-UNetネットワーク(SMamba-UNet)を提案する。
提案手法は,Mamba-UNetネットワーク下での自己優先型マルチスケールコンテキスト特徴を学習することを目的としている。
論文 参考訳(メタデータ) (2024-07-08T14:41:53Z) - I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling [8.909355958696414]
本稿では,医用画像合成のための新しい敵対モデルI2I-Mambaを提案する。
I2I-Mambaは、ターゲットモダリティ画像の合成における最先端CNNおよびトランスフォーマーベースの手法に対して優れた性能を提供する。
論文 参考訳(メタデータ) (2024-05-22T21:55:58Z) - HC-Mamba: Vision MAMBA with Hybrid Convolutional Techniques for Medical Image Segmentation [5.318153305245246]
本稿では,現代空間モデルMambaに基づく新しい医用画像分割モデルHC-Mambaを提案する。
HC-Mambaモデルに拡張畳み込み手法を導入し,より広い範囲の文脈情報を取得する。
さらに、HC-Mambaモデルでは、深度的に分離可能な畳み込みを採用し、パラメータの数とモデルの計算能力を大幅に削減する。
論文 参考訳(メタデータ) (2024-05-08T12:24:50Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
バイオメディカルイメージセグメンテーションのための汎用ネットワークであるU-Mambaを紹介する。
ディープシークエンスモデルの新たなファミリーであるState Space Sequence Models (SSM) にインスパイアされ、我々はハイブリッドCNN-SSMブロックを設計する。
我々は,CTおよびMR画像における腹部臓器の3次元分節化,内視鏡画像における計器の分節化,顕微鏡画像における細胞分節化の4つの課題について実験を行った。
論文 参考訳(メタデータ) (2024-01-09T18:53:20Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。