論文の概要: CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity
- arxiv url: http://arxiv.org/abs/2410.21060v1
- Date: Mon, 28 Oct 2024 14:18:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:44.369445
- Title: CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity
- Title(参考訳): CTINEXUS:データスカシティ下でのサイバーセキュリティ知識グラフ構築のための最適化LDMインコンテキスト学習の活用
- Authors: Yutong Cheng, Osama Bajaber, Saimon Amanuel Tsegai, Dawn Song, Peng Gao,
- Abstract要約: サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
- 参考スコア(独自算出の注目度): 49.657358248788945
- License:
- Abstract: Textual descriptions in cyber threat intelligence (CTI) reports, such as security articles and news, are rich sources of knowledge about cyber threats, crucial for organizations to stay informed about the rapidly evolving threat landscape. However, current CTI extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction. Syntax parsing relies on fixed rules and dictionaries, while model fine-tuning requires large annotated datasets, making both paradigms challenging to adapt to new threats and ontologies. To bridge the gap, we propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models (LLMs) for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction. Unlike existing methods, CTINexus requires neither extensive data nor parameter tuning and can adapt to various ontologies with minimal annotated examples. This is achieved through (1) a carefully designed automatic prompt construction strategy with optimal demonstration retrieval for extracting a wide range of cybersecurity entities and relations; (2) a hierarchical entity alignment technique that canonicalizes the extracted knowledge and removes redundancy; (3) an ICL-enhanced long-distance relation prediction technique to further complete the CKSG with missing links. Our extensive evaluations using 150 real-world CTI reports collected from 10 platforms demonstrate that CTINexus significantly outperforms existing methods in constructing accurate and complete CSKGs, highlighting its potential to transform CTI analysis with an efficient and adaptable solution for the dynamic threat landscape.
- Abstract(参考訳): サイバー脅威インテリジェンス(CTI)レポートのテキスト記述(セキュリティ記事やニュースなど)は、サイバー脅威に関する豊富な知識源であり、急速に進化する脅威の状況について組織が情報を提供し続けることが不可欠である。
しかし、現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
構文解析は固定された規則と辞書に依存し、モデル微調整は大きな注釈付きデータセットを必要とするため、どちらのパラダイムも新しい脅威やオントロジに適応することが困難である。
このギャップを埋めるため,データ効率の良いCTI知識抽出と高品質なサイバーセキュリティ知識グラフ(CSKG)構築のために,大規模言語モデル(LLM)のテキスト内学習(ICL)を最適化した新しいフレームワークであるCTINexusを提案する。
既存の方法とは異なり、CTINexusは広範なデータもパラメータチューニングも必要とせず、最小限の注釈付き例で様々なオントロジーに適応できる。
本手法は,(1)広範囲のサイバーセキュリティエンティティと関係を抽出するための最適な実証検索と,(2)抽出した知識を正則化して冗長性を除去する階層的エンティティアライメント技術,(3)ICLに強化された長距離関係予測手法により,CKSGのリンクを欠くことなくさらに完成させる。
10 プラットフォームから収集した150 の実世界の CTI レポートによる広範な評価の結果,CTINexus は CSKG の正確かつ完全な構築において,既存の手法よりも著しく優れており,動的脅威景観に対する効率的かつ適応的なソリューションで CTI 解析を変換する可能性を強調している。
関連論文リスト
- Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
論文 参考訳(メタデータ) (2024-08-15T11:32:46Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - TSTEM: A Cognitive Platform for Collecting Cyber Threat Intelligence in the Wild [0.06597195879147556]
オープンソースからサイバー脅威情報(CTI)を抽出することは、急速に拡大する防衛戦略である。
従来の研究では、抽出プロセスの個々のコンポーネントの改善に焦点が当てられていた。
コミュニティには、ストリーミングCTIデータパイプラインを野放しに展開するオープンソースプラットフォームがない。
論文 参考訳(メタデータ) (2024-02-15T14:29:21Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
本稿では,画像DCT係数が推定精度に与える影響を解析し,オフロードのためのチャネル非依存の有効性符号化を提案する。
論文 参考訳(メタデータ) (2022-11-24T20:13:17Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。