論文の概要: KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment
- arxiv url: http://arxiv.org/abs/2408.08088v2
- Date: Fri, 25 Jul 2025 07:41:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 18:17:32.706383
- Title: KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment
- Title(参考訳): KGV:サイバー脅威情報信頼性評価のための知識グラフによる大規模言語モデルの統合
- Authors: Zongzong Wu, Fengxiao Tang, Ming Zhao, Yufeng Li,
- Abstract要約: サイバー脅威インテリジェンス(サイバー脅威インテリジェンス、CTI)は、高度で組織化され、兵器化されたサイバー攻撃を防ぐ重要なツールである。
本稿では,大規模言語モデル (LLM) と単純な構造化知識グラフ (KG) を統合し,CTIの信頼性自動評価を行う最初のフレームワークである知識グラフベース検証(KGV)を提案する。
実験の結果,我々のKGVはCTI-200データセット上で最先端の事実推論手法より優れており,F1は5.7%向上していることがわかった。
- 参考スコア(独自算出の注目度): 38.312774244521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber threat intelligence (CTI) is a crucial tool to prevent sophisticated, organized, and weaponized cyber attacks. However, few studies have focused on the credibility assessment of CTI, and this work still requires manual analysis by cybersecurity experts. In this paper, we propose Knowledge Graph-based Verifier (KGV), the first framework integrating large language models (LLMs) with simple structured knowledge graphs (KGs) for automated CTI credibility assessment. Unlike entity-centric KGs, KGV constructs paragraph-level semantic graphs where nodes represent text segments connected through similarity analysis, which effectively enhances the semantic understanding ability of the model, reduces KG density and greatly improves response speed. Experimental results demonstrate that our KGV outperforms state-of-the-art fact reasoning methods on the CTI-200 dataset, achieving a 5.7\% improvement in F1. Additionally, it shows strong scalability on factual QA and fake news detection datasets. Compared to entity-based knowledge graphs (KGs) for equivalent-length texts, our structurally simple KG reduces node quantities by nearly two-thirds while boosting precision by 1.7\% and cutting response time by 46.7\%. In addition, we have created and publicly released the first CTI credibility assessment dataset, CTI-200. Distinct from CTI identification datasets, CTI-200 refines CTI summaries and key sentences to focus specifically on credibility assessment.
- Abstract(参考訳): サイバー脅威インテリジェンス(サイバー脅威インテリジェンス、CTI)は、高度で組織化され、兵器化されたサイバー攻撃を防ぐ重要なツールである。
しかし、CTIの信頼性評価に焦点を当てた研究はほとんどなく、この研究にはサイバーセキュリティの専門家による手動分析が必要である。
本稿では,大規模言語モデル (LLM) と単純な構造化知識グラフ (KG) を統合し,CTIの信頼性自動評価を行う最初のフレームワークである知識グラフベース検証(KGV)を提案する。
エンティティ中心のKGとは異なり、KGVは段落レベルのセマンティックグラフを構築し、ノードは類似性分析によって接続されたテキストセグメントを表現し、モデルのセマンティック理解能力を効果的に強化し、KG密度を低減し、応答速度を大幅に改善する。
実験の結果,我々のKGVはCTI-200データセット上で最先端の事実推論手法より優れており,F1は5.7%向上していることがわかった。
さらに、事実のQAと偽ニュース検出データセットに強力なスケーラビリティを示す。
等価長テキストに対するエンティティベースの知識グラフ(KG)と比較して、構造的に単純なKGは、ノードの量を約3分の2削減し、精度は1.7\%、応答時間を46.7\%向上させる。
さらに,最初のCTI信頼性評価データセットであるCTI-200を作成した。
CTI識別データセットとは異なるCTI-200は、CTIサマリーとキー文を洗練し、信頼性評価に特化している。
関連論文リスト
- Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling [53.11315884128402]
時間知識グラフ(TKG)補完モデルは、伝統的にトレーニング中にグラフ全体へのアクセスを前提としている。
本稿では,TKGに特化して設計されたインクリメンタルトレーニングフレームワークを提案する。
提案手法は,モデルに依存しない拡張層と加重サンプリング戦略を組み合わせることで,既存のTKG補完手法を拡張および改善することができる。
論文 参考訳(メタデータ) (2025-07-25T06:02:48Z) - SynthCTI: LLM-Driven Synthetic CTI Generation to enhance MITRE Technique Mapping [1.2534672170380357]
我々は,表現不足のMITRE ATT&CK技術に対して,高品質な合成CTI文を生成するためのフレームワークであるSynthCTIを提案する。
本手法では,学習データから意味コンテキストを抽出するためにクラスタリングベースの戦略を用いる。
利用可能な2つのCTIデータセットであるCTI-to-MITREとTRAM上で,異なる容量のLLMを用いてSynthCTIを評価する。
論文 参考訳(メタデータ) (2025-07-21T09:22:39Z) - LRCTI: A Large Language Model-Based Framework for Multi-Step Evidence Retrieval and Reasoning in Cyber Threat Intelligence Credibility Verification [7.608817324043705]
マルチステップCyber Threat Intelligence 信頼性検証のためのフレームワーク LRCTI を提案する。
このフレームワークはまず、複雑なインテリジェンスレポートを簡潔で行動可能な脅威クレームに抽出するために、テキスト要約モジュールを使用する。
次に、適応的な多段階証拠検索機構を使用して、CTI固有のコーパスからの情報を反復的に識別し、洗練する。
CTI-200 と PolitiFact の2つのベンチマークデータセットによる実験では、RCTI は F1-Macro と F1-Micro のスコアを 5% 以上改善し、それぞれ 90.9% と 93.6% に達した。
論文 参考訳(メタデータ) (2025-07-15T13:42:32Z) - Integrating Graph Theoretical Approaches in Cybersecurity Education CSCI-RTED [0.0]
グラフ理論は、サイバーエコシステム内の関係をモデル化するための強力なフレームワークを提供する。
本稿では,グラフ理論の概念を取り入れたNSL-KDDデータセットの充実版を開発し,その実用的価値を高める。
論文 参考訳(メタデータ) (2025-04-23T19:08:30Z) - CTI-HAL: A Human-Annotated Dataset for Cyber Threat Intelligence Analysis [2.7862108332002546]
サイバー脅威インテリジェンス(CTI)の情報源は、しばしば非構造化されており、自然言語で情報を自動的に抽出することは困難である。
近年,CTIデータからAIを自動抽出する方法が研究されている。
我々は,MITRE ATT&CKフレームワークに基づいて,CTIレポートを手作業で構築し,構造化した新しいデータセットを提案する。
論文 参考訳(メタデータ) (2025-04-08T09:47:15Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge [63.19837262782962]
知識グラフ埋め込み(KGE)技術は、知識グラフ内の実体と関係のコンパクトな表現を学習するために重要である。
本研究では、エンティティクラスタのセマンティックコヒーレントな階層構造を構築するKG-FITを紹介する。
ベンチマークデータセットFB15K-237、YAGO3-10、PrimeKGの実験は、最先端の訓練済み言語モデルに基づく手法よりもKG-FITの方が優れていることを示した。
論文 参考訳(メタデータ) (2024-05-26T03:04:26Z) - Unveiling Hidden Links Between Unseen Security Entities [3.7138962865789353]
VulnScopperは、知識グラフ(KG)と自然言語処理(NLP)を組み合わせたマルチモーダル表現学習を利用した革新的なアプローチである。
我々は、National Vulnerability Database(NVD)とRed Hat CVEデータベースの2つの主要なセキュリティデータセットでVulnScopperを評価した。
VulnScopperは既存の手法よりも優れており、CVEをCWE(Common Vulnerabilities and Exposures)、CPE(Common Platform Languageions)にリンクする際の78%のHits@10精度を実現している。
論文 参考訳(メタデータ) (2024-03-04T13:14:39Z) - Constructing a Knowledge Graph from Textual Descriptions of Software
Vulnerabilities in the National Vulnerability Database [3.0724051098062097]
国立データベース(NVD)の情報から脆弱性知識グラフを構築するための新しい手法を提案する。
提案手法は,ニューラルネットワーク,ルール,知識グラフの埋め込みを組み合わせることで,名前付きエンティティ認識(NER),関係抽出(RE),エンティティ予測を組み合わせる。
本手法は,サイバーセキュリティに使用される知識グラフの欠落したエンティティの修正にどのように役立つかを示し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-04-30T04:23:40Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。