論文の概要: MIDAS: Multi-level Intent, Domain, And Slot Knowledge Distillation for Multi-turn NLU
- arxiv url: http://arxiv.org/abs/2408.08144v1
- Date: Thu, 15 Aug 2024 13:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:56:12.240433
- Title: MIDAS: Multi-level Intent, Domain, And Slot Knowledge Distillation for Multi-turn NLU
- Title(参考訳): MIDAS:マルチターンNLUのための多レベルインテント,ドメイン,スロット知識蒸留
- Authors: Yan Li, So-Eon Kim, Seong-Bae Park, Soyeon Caren Han,
- Abstract要約: MIDASは、マルチレベルインテント、ドメイン、スロット知識の蒸留を多ターンNLUに活用する新しいアプローチである。
本稿では,マルチレベルインテント,ドメイン,スロット知識の蒸留を多ターンNLUに適用したMIDASを提案する。
- 参考スコア(独自算出の注目度): 9.047800457694656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although Large Language Models(LLMs) can generate coherent and contextually relevant text, they often struggle to recognise the intent behind the human user's query. Natural Language Understanding (NLU) models, however, interpret the purpose and key information of user's input to enable responsive interactions. Existing NLU models generally map individual utterances to a dual-level semantic frame, involving sentence-level intent and word-level slot labels. However, real-life conversations primarily consist of multi-turn conversations, involving the interpretation of complex and extended dialogues. Researchers encounter challenges addressing all facets of multi-turn dialogue conversations using a unified single NLU model. This paper introduces a novel approach, MIDAS, leveraging a multi-level intent, domain, and slot knowledge distillation for multi-turn NLU. To achieve this, we construct distinct teachers for varying levels of conversation knowledge, namely, sentence-level intent detection, word-level slot filling, and conversation-level domain classification. These teachers are then fine-tuned to acquire specific knowledge of their designated levels. A multi-teacher loss is proposed to facilitate the combination of these multi-level teachers, guiding a student model in multi-turn dialogue tasks. The experimental results demonstrate the efficacy of our model in improving the overall multi-turn conversation understanding, showcasing the potential for advancements in NLU models through the incorporation of multi-level dialogue knowledge distillation techniques.
- Abstract(参考訳): LLM(Large Language Models)は、コヒーレントでコンテキストに関連のあるテキストを生成することができるが、人間のクエリの背後にある意図を認識するのに苦労することが多い。
しかし、自然言語理解(NLU)モデルは、ユーザの入力の目的とキー情報を解釈し、応答性のある対話を可能にする。
既存のNLUモデルは、通常、個々の発話を文レベルの意図と単語レベルのスロットラベルを含む二重レベルのセマンティックフレームにマッピングする。
しかし、実生活会話は主に多ターン会話から成り、複雑で拡張された対話の解釈を含む。
研究者は、統一された単一NLUモデルを使用して、マルチターン対話のすべての面に対処する課題に遭遇する。
本稿では,マルチレベルインテント,ドメイン,スロット知識の蒸留を多ターンNLUに適用したMIDASを提案する。
これを実現するために,文レベルの意図検出,単語レベルのスロットフィリング,会話レベルのドメイン分類など,様々なレベルの会話知識を持つ教師を個別に構築する。
これらの教師は、指定されたレベルに関する特定の知識を取得するために微調整される。
マルチターン対話タスクにおいて学生モデルを導くことで、これらのマルチレベル教師の組み合わせを容易にするために、マルチ教師の損失が提案される。
実験の結果,多段階対話知識蒸留技術の導入によるNLUモデルの進歩の可能性を示した。
関連論文リスト
- Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification [6.459396785817196]
Chain-of-Intentは、セルフプレイを通じて意図駆動の会話を生成する。
MINT-CLはマルチタスクコントラスト学習を用いたマルチターンインテント分類のためのフレームワークである。
MINT-Eは多言語対応のマルチターンeコマース対話コーパスである。
論文 参考訳(メタデータ) (2024-11-21T15:59:29Z) - Towards Spoken Language Understanding via Multi-level Multi-grained Contrastive Learning [50.1035273069458]
音声言語理解(SLU)はタスク指向対話システムにおける中核的なタスクである。
本稿では,発話レベル,スロットレベル,単語レベルを含む3段階のコントラスト学習を実現するためのマルチレベルMMCLフレームワークを提案する。
本フレームワークは,2つの公開マルチインテリジェントSLUデータセットに対して,最先端の新たな結果を実現する。
論文 参考訳(メタデータ) (2024-05-31T14:34:23Z) - DivTOD: Unleashing the Power of LLMs for Diversifying Task-Oriented Dialogue Representations [21.814490079113323]
汎用テキストで事前訓練された言語モデルは、様々な分野において印象的な成果を上げている。
しかし、タスク指向対話(TOD)の言語的特徴と一般的なテキストとの比較は、既存の言語モデルの実用性を制限している。
本研究では,多様なタスク指向の対話表現を学習するために,LLMと協調して対話事前学習モデルDivTODを提案する。
論文 参考訳(メタデータ) (2024-03-31T04:36:57Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Joint Modelling of Spoken Language Understanding Tasks with Integrated
Dialog History [30.20353302347147]
本研究では,発話の意図,対話行動,話者の役割,感情を共同で予測するために,対話コンテキストを学習する新しいモデルアーキテクチャを提案する。
本実験は,タスク固有分類器と類似した結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-01T16:26:18Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
ユニバーサル対話エンコーダとして双方向情報デカップリングネットワーク(BiDeN)を提案する。
BiDeNは過去と将来の両方のコンテキストを明示的に取り入れており、幅広い対話関連のタスクに一般化することができる。
異なる下流タスクのデータセットに対する実験結果は、我々のBiDeNの普遍性と有効性を示している。
論文 参考訳(メタデータ) (2022-04-18T03:51:46Z) - Knowledge Augmented BERT Mutual Network in Multi-turn Spoken Dialogues [6.4144180888492075]
本稿では,2つのSLUタスク間の対話コンテキストを相互に活用するために,BERTベースのジョイントモデルとナレッジアテンションモジュールを備えることを提案する。
さらにゲーティング機構を利用して、無関係な知識三重項をフィルタリングし、気を散らす理解を回避する。
2つの複雑なマルチターン対話データセットの実験的結果は、2つのSLUタスクをフィルター付き知識と対話コンテキストで相互にモデル化することで実証された。
論文 参考訳(メタデータ) (2022-02-23T04:03:35Z) - A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection [6.361198391681688]
CaBERT-SLUはコンテキスト対応階層型BERT融合ネットワーク(CaBERT-SLU)である
提案手法は,2つの複雑なマルチターン対話データセットにおいて,最新技術(SOTA)のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2021-09-03T02:00:03Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。