論文の概要: Machine learning empowered Modulation detection for OFDM-based signals
- arxiv url: http://arxiv.org/abs/2408.08179v1
- Date: Thu, 15 Aug 2024 14:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:46:24.741509
- Title: Machine learning empowered Modulation detection for OFDM-based signals
- Title(参考訳): 機械学習によるOFDM信号の変調検出
- Authors: Ali Pourranjbar, Georges Kaddoum, Verdier Assoume Mba, Sahil Garg, Satinder Singh,
- Abstract要約: 視覚的MLに基づくOFDM技術のための変調検出法を提案する。
提案手法では,ResNetネットワークを用いて変調型を同時に検出し,サイクリックプレフィックスを正確に検出する。
その結果,提案手法は送信信号の事前知識を必要とせずにOFDMベースの技術に適用できることがわかった。
- 参考スコア(独自算出の注目度): 37.371849684842715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a blind ML-based modulation detection for OFDM-based technologies. Unlike previous works that assume an ideal environment with precise knowledge of subcarrier count and cyclic prefix location, we consider blind modulation detection while accounting for realistic environmental parameters and imperfections. Our approach employs a ResNet network to simultaneously detect the modulation type and accurately locate the cyclic prefix. Specifically, after eliminating the environmental impact from the signal and accurately extracting the OFDM symbols, we convert these symbols into scatter plots. Due to their unique shapes, these scatter plots are then classified using ResNet. As a result, our proposed modulation classification method can be applied to any OFDM-based technology without prior knowledge of the transmitted signal. We evaluate its performance across various modulation schemes and subcarrier numbers. Simulation results show that our method achieves a modulation detection accuracy exceeding $80\%$ at an SNR of $10$ dB and $95\%$ at an SNR of $25$ dB.
- Abstract(参考訳): 視覚的MLに基づくOFDM技術のための変調検出法を提案する。
プリキャリア数やサイクリックプレフィックス位置を正確に把握した理想的な環境を前提とした従来の研究とは異なり,現実的な環境パラメータや不完全性を考慮したブラインド変調検出を考慮に入れた。
提案手法では,ResNetネットワークを用いて変調型を同時に検出し,サイクリックプレフィックスを正確に検出する。
具体的には、信号から環境影響を排除し、OFDMシンボルを正確に抽出した後、これらのシンボルを散乱プロットに変換する。
その独特の形状のため、これらの散乱プロットはResNetを使って分類される。
その結果,提案手法は送信信号の事前知識を必要とせずにOFDMベースの技術に適用できることがわかった。
各種変調スキームとサブキャリア数にまたがる性能を評価する。
シミュレーションの結果,SNRが$10$dBで$80\%,SNRが$25$dBで$95\%を超える変調検出精度が得られた。
関連論文リスト
- Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
畳み込みニューラルネットワーク(CNN)の近代的アーキテクチャを用いた自動変調分類(AMC)手法を提案する。
我々は、受信したI/Qデータから99.61%の計算負荷削減と8倍の高速変換をもたらす分光器の分解能変換を行う。
この性能は、SqueezeNet、Resnet-50、InceptionResnet-V2、Inception-V3、VGG-16、Densenet-201といった既存のCNNモデルで評価される。
論文 参考訳(メタデータ) (2023-06-06T16:14:15Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
拡散モデル(DM)は、最近、様々な領域で生成モデリングを行うためのSoTAツールとして登場した。
本稿では、プログレッシブ信号変換が可能なDMの一般化されたファミリであるf-DMを提案する。
我々は、ダウンサンプリング、ぼやけ、学習された変換を含む様々な機能を持つ画像生成タスクにf-DMを適用した。
論文 参考訳(メタデータ) (2022-10-10T18:49:25Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
本研究では、パルス内変調型レーダ信号を自動的に認識するディープラーニングに基づく新しい手法を提案する。
提案するFF-CNN技術は,現在の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T20:18:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
ディープニューラルネットワーク(DNN)は、レイリーフェディングチャネル上のエンドツーエンドデータ検出のための空間変調直交周波数分割多重化(SM-OFDM)技術と統合されている。
提案システムは受信したシンボルを直接復調し,チャネル推定を暗黙的に行う。
論文 参考訳(メタデータ) (2021-09-15T10:54:56Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
ブラインド変調分類は、認知無線ネットワークを実装するための重要なステップである。
マルチインプット・マルチアウトプット(MIMO)技術は、軍事や民間の通信システムで広く使われている。
これらのシナリオでは、従来の可能性ベースのアプローチや特徴ベースのアプローチは適用できない。
論文 参考訳(メタデータ) (2020-04-01T12:27:29Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
本稿では,信号検出に使用するLevenberg-Marquardtアルゴリズムを用いて,多層ニューラルネットワーク(ANN)を提案する。
本研究では,受信機におけるチャネル状態情報を知ることなく,データシンボル推定を行うブラインド検出方式を検討する。
論文 参考訳(メタデータ) (2020-01-31T03:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。