LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
- URL: http://arxiv.org/abs/2408.08208v2
- Date: Tue, 26 Nov 2024 08:07:08 GMT
- Title: LLM4DSR: Leveraing Large Language Model for Denoising Sequential Recommendation
- Authors: Bohao Wang, Feng Liu, Changwang Zhang, Jiawei Chen, Yudi Wu, Sheng Zhou, Xingyu Lou, Jun Wang, Yan Feng, Chun Chen, Can Wang,
- Abstract summary: Sequential Recommenders generate recommendations based on users' historical interaction sequences.
These sequences are often contaminated by noisy interactions, which significantly impairs recommendation performance.
Large Language Models (LLMs) equipped with extensive open knowledge and semantic reasoning abilities offer a promising avenue to bridge this information gap.
We propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs.
- Score: 27.255048063428077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential Recommenders generate recommendations based on users' historical interaction sequences. However, in practice, these collected sequences are often contaminated by noisy interactions, which significantly impairs recommendation performance. Accurately identifying such noisy interactions without additional information is particularly challenging due to the absence of explicit supervisory signals indicating noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, offer a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation presents notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the denoising task and the inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods.
Related papers
- MSL: Not All Tokens Are What You Need for Tuning LLM as a Recommender [24.03860153639828]
We propose a novel Masked Softmax Loss (MSL) tailored for fine-tuning large language models (LLMs) on recommendation.
MSL improves LML by identifying and masking invalid tokens that could lead to fictitious item descriptions during loss computation.
Extensive experiments conducted on four public datasets further validate the effectiveness of MSL, achieving an average improvement of 42.24% in NDCG@10.
arXiv Detail & Related papers (2025-04-05T13:48:33Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Unleashing the Power of Large Language Model for Denoising Recommendation [19.744823605753382]
We introduce LLaRD, a framework leveraging large language models to improve denoising in recommender systems.
LLaRD generates denoising-related knowledge by first enriching semantic insights from observational data.
It then employs a novel Chain-of-Thought (CoT) technique over user-item interaction graphs to reveal relation knowledge for denoising.
arXiv Detail & Related papers (2025-02-13T08:19:45Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
This paper introduces RLRF4Rec, a novel framework integrating Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [89.9648814145473]
Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses.
Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue.
We propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective.
arXiv Detail & Related papers (2024-09-03T07:01:37Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation [3.5113201254928117]
Sequential recommendation (SR) tasks enhance recommendation accuracy by capturing the connection between users' past interactions and their changing preferences.
Conventional models often focus solely on capturing sequential patterns within the training data, neglecting the broader context and semantic information embedded in item titles from external sources.
DelRec aims to extract knowledge from SR models and enable LLMs to easily comprehend and utilize this supplementary information for more effective sequential recommendations.
arXiv Detail & Related papers (2024-06-17T02:47:09Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.