論文の概要: Snuffy: Efficient Whole Slide Image Classifier
- arxiv url: http://arxiv.org/abs/2408.08258v1
- Date: Thu, 15 Aug 2024 16:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:16:25.683334
- Title: Snuffy: Efficient Whole Slide Image Classifier
- Title(参考訳): Snuffy: 効率的な全スライド画像分類器
- Authors: Hossein Jafarinia, Alireza Alipanah, Danial Hamdi, Saeed Razavi, Nahal Mirzaie, Mohammad Hossein Rohban,
- Abstract要約: デジタル病理学におけるMIL(Multiple Case Learning)を用いたWSI(Whole Slide Image)分類は、重要な計算課題に直面している。
textbftextitSnuffy アーキテクチャはスパーストランスフォーマーをベースとした新しい MIL プール方式である。
Snuffy が CAMELYON16 および TCGA Lung 癌データセットに対して有効であることを示す。
- 参考スコア(独自算出の注目度): 1.020994600344265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requiring long training periods and considerable computational resources. At the same time, no pre-training affects performance due to domain shifts from natural images to WSIs. We introduce \textbf{\textit{Snuffy}} architecture, a novel MIL-pooling method based on sparse transformers that mitigates performance loss with limited pre-training and enables continual few-shot pre-training as a competitive option. Our sparsity pattern is tailored for pathology and is theoretically proven to be a universal approximator with the tightest probabilistic sharp bound on the number of layers for sparse transformers, to date. We demonstrate Snuffy's effectiveness on CAMELYON16 and TCGA Lung cancer datasets, achieving superior WSI and patch-level accuracies. The code is available on \url{https://github.com/jafarinia/snuffy}.
- Abstract(参考訳): デジタル病理学におけるMIL(Multiple Case Learning)を用いたWSI(Whole Slide Image)分類は、重要な計算課題に直面している。
現在の手法は主に、長い訓練期間と相当な計算資源を必要とする満足なパフォーマンスのために広範な自己教師付き学習(SSL)に依存している。
同時に、事前トレーニングは、自然画像からWSIへのドメインシフトによるパフォーマンスに影響を与えない。
このアーキテクチャはスパーストランスフォーマーをベースとした新しいMILプーリング手法であり,性能損失を限定的な事前トレーニングで軽減し,競争的オプションとして連続的な数発の事前トレーニングを可能にする。
我々の空間パターンは病理学に特化しており、理論上はスパース変圧器の層数に最も密接な確率的シャープを持つ普遍近似器であることが証明されている。
Snuffy が CAMELYON16 および TCGA Lung 癌データセットに対して有効であることを示す。
コードは \url{https://github.com/jafarinia/snuffy} で公開されている。
関連論文リスト
- An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
医用画像分割のための軽量だが効率的な新しいモデル LiteNeXt を提案する。
LiteNeXtは、少量のパラメータ (0.71M) とギガ浮動小数点演算 (0.42) でスクラッチから訓練されている。
論文 参考訳(メタデータ) (2024-04-04T01:59:19Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Task-specific Fine-tuning via Variational Information Bottleneck for
Weakly-supervised Pathology Whole Slide Image Classification [10.243293283318415]
MIL(Multiple Instance Learning)は、デジタル・パスロジー・ホール・スライド・イメージ(WSI)分類において有望な結果を示している。
本稿では,Information Bottleneck 理論を動機とした効率的な WSI 微調整フレームワークを提案する。
我々のフレームワークは、様々なWSIヘッド上の5つの病理WSIデータセットで評価される。
論文 参考訳(メタデータ) (2023-03-15T08:41:57Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Embedding Space Augmentation for Weakly Supervised Learning in
Whole-Slide Images [3.858809922365453]
多重インスタンス学習(MIL)は、WSIレベルのアノテーションからギガピクセル全体スライディングイメージ(WSI)を学習するための広く使われているフレームワークである。
EmbAugmenterは、画素空間ではなく埋め込み空間でデータ拡張を合成できるデータ拡張生成逆数ネットワーク(DA-GAN)である。
提案手法は,MILを改良することなく性能を向上し,MILトレーニングにおける従来のパッチレベルの強化と同等であり,より高速である。
論文 参考訳(メタデータ) (2022-10-31T02:06:39Z) - Training Your Sparse Neural Network Better with Any Mask [106.134361318518]
高品質で独立したトレーニング可能なスパースマスクを作成するために、大規模なニューラルネットワークをプルーニングすることが望ましい。
本稿では、デフォルトの高密度ネットワークトレーニングプロトコルから逸脱するためにスパーストレーニングテクニックをカスタマイズできる別の機会を示す。
我々の新しいスパーストレーニングレシピは、スクラッチから様々なスパースマスクでトレーニングを改善するために一般的に適用されます。
論文 参考訳(メタデータ) (2022-06-26T00:37:33Z) - Learning strides in convolutional neural networks [34.20666933112202]
この研究は、学習可能なステップを持つ最初のダウンサンプリング層であるDiffStrideを紹介している。
音声と画像の分類実験は,ソリューションの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2022-02-03T16:03:36Z) - Multi-Agent Semi-Siamese Training for Long-tail and Shallow Face
Learning [54.13876727413492]
多くの現実世界の顔認識シナリオでは、トレーニングデータセットの深さは浅いため、IDごとに2つの顔画像しか利用できません。
非均一なサンプルの増加により、このような問題はより一般的なケース、すなわち長い尾の顔学習に変換される。
これらの問題に対処するために,マルチエージェントセミシアントレーニング(masst)という高度なソリューションを導入する。
広範な実験と比較は、長い尾と浅い顔学習のためのMASSTの利点を示しています。
論文 参考訳(メタデータ) (2021-05-10T04:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。