SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data
- URL: http://arxiv.org/abs/2409.04463v2
- Date: Sat, 25 Jan 2025 23:47:18 GMT
- Title: SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data
- Authors: Mohammad Amin Basiri, Sina Khanmohammadi,
- Abstract summary: We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
Our experiments validate the improved accuracy and simplicity of discovered network dynamics.
- Score: 0.27624021966289597
- License:
- Abstract: The combination of machine learning (ML) and sparsity-promoting techniques is enabling direct extraction of governing equations from data, revolutionizing computational modeling in diverse fields of science and engineering. The discovered dynamical models could be used to address challenges in climate science, neuroscience, ecology, finance, epidemiology, and beyond. However, most existing sparse identification methods for discovering dynamical systems treat the whole system as one without considering the interactions between subsystems. As a result, such models are not able to capture small changes in the emergent system behavior. To address this issue, we developed a new method called Sparse Identification of Nonlinear Dynamical Systems from Graph-structured data (SINDyG), which incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics. We showcase the application of our proposed method using several case studies of neuronal dynamics, where we model the macroscopic oscillation of a population of neurons using the extended Stuart-Landau (SL) equation and utilize the SINDyG method to identify the underlying nonlinear dynamics. Our extensive computational experiments validate the improved accuracy and simplicity of discovered network dynamics when compared to the original SINDy approach.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - LeARN: Learnable and Adaptive Representations for Nonlinear Dynamics in System Identification [0.0]
We introduce a nonlinear system identification framework called LeARN.
It transcends the need for prior domain knowledge by learning the library of basis functions directly from data.
We validate our framework on the Neural Fly dataset, showcasing its robust adaptation and capabilities.
arXiv Detail & Related papers (2024-12-16T18:03:23Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.