論文の概要: Coqa: Blazing Fast Compiler Optimizations for QAOA
- arxiv url: http://arxiv.org/abs/2408.08365v1
- Date: Thu, 15 Aug 2024 18:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:29:47.399064
- Title: Coqa: Blazing Fast Compiler Optimizations for QAOA
- Title(参考訳): Coqa: QAOAの高速コンパイラ最適化
- Authors: Yuchen Zhu, Yidong Zhou, Jinglei Cheng, Yuwei Jin, Boxi Li, Siyuan Niu, Zhiding Liang,
- Abstract要約: 我々は,異なる種類の量子ハードウェアに適したQAOA回路のコンパイルを最適化するために,Coqaを提案する。
平均的なゲート数の30%削減と,ベンチマーク全体のコンパイル時間の39倍の高速化を実現しています。
- 参考スコア(独自算出の注目度): 3.165516590671437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize QAOA circuit compilation tailored to different types of quantum hardware. Our method integrates a linear nearest-neighbor (LNN) topology and efficiently map the patterns of QAOA circuits to the LNN topology by heuristically checking the interaction based on the weight of problem Hamiltonian. This approach allows us to reduce the number of SWAP gates during compilation, which directly impacts the circuit depth and overall fidelity of the quantum computation. By leveraging the inherent patterns in QAOA circuits, our approach achieves more efficient compilation compared to general-purpose compilers. With our proposed method, we are able to achieve an average of 30% reduction in gate count and a 39x acceleration in compilation time across our benchmarks.
- Abstract(参考訳): 量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、古典的コンピュータよりも量子上の優位性を達成するための最も有望な候補の1つである。
しかし、既存のコンパイラにはQAOA回路を最適化する特別な方法がない。
QAOA回路には回路パターンがあり、現在の量子ハードウェアには特定の量子ビット接続トポロジーがある。
そこで我々は,異なる種類の量子ハードウェアに適したQAOA回路のコンパイルを最適化するために,Coqaを提案する。
本手法は,線形近接近傍(LNN)トポロジとQAOA回路のパターンをLNNトポロジに効率的にマッピングし,問題ハミルトニアンの重みに基づく相互作用のヒューリスティックな検証を行う。
このアプローチにより、コンパイル中のSWAPゲートの数を削減し、量子計算の回路深さと全体的な忠実度に直接影響する。
提案手法は,QAOA回路の固有パターンを活用することにより,汎用コンパイラよりも効率的なコンパイルを実現する。
提案手法により,平均ゲート数を30%削減し,ベンチマーク全体のコンパイル時間で39倍の高速化を実現することができる。
関連論文リスト
- ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout [6.382954852270525]
本稿では,LNNアーキテクチャを用いた分散量子コンピューティング(DQC)の効率的なコンパイル手法を提案する。
提案手法は, コンパイル時間, ゲート数, 回路深さを著しく低減し, 大規模量子計算の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-10-31T12:07:46Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
量子回路を最適化し、状態準備と量子アルゴリズムの実装のための性能高速化を示すために、繰り返し事前条件勾配降下(IPG)を行う。
4量子W状態と最大絡み合った5量子GHZ状態を作成するための104ドルの係数による忠実度の向上を示す。
また、IPGを用いて量子フーリエ変換のユニタリを最適化するゲインを示し、IonQの量子処理ユニット(QPU)上でそのような最適化された回路の実行結果を報告する。
論文 参考訳(メタデータ) (2023-09-18T17:30:03Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
動的にフィールドプログラマブルな量子ビットアレイ(DPQA)が量子情報処理のための有望なプラットフォームとして登場した。
本稿では,複数の配列を含むDPQAアーキテクチャについて考察する。
DPQAをベースとしたコンパイル回路では,グリッド固定アーキテクチャに比べてスケーリングオーバヘッドが小さくなることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:13:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
論文 参考訳(メタデータ) (2021-12-12T04:00:45Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。