論文の概要: A Structured Method for Compilation of QAOA Circuits in Quantum
Computing
- arxiv url: http://arxiv.org/abs/2112.06143v4
- Date: Wed, 20 Jul 2022 00:56:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 18:47:32.774327
- Title: A Structured Method for Compilation of QAOA Circuits in Quantum
Computing
- Title(参考訳): 量子コンピューティングにおけるQAOA回路の一構成法
- Authors: Yuwei Jin, Jason Luo, Lucent Fong, Yanhao Chen, Ari B. Hayes, Chi
Zhang, Fei Hua, Eddy Z. Zhang
- Abstract要約: 2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
- 参考スコア(独自算出の注目度): 5.560410979877026
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum Approximation Optimization Algorithm (QAOA) is a highly advocated
variational algorithm for solving the combinatorial optimization problem. One
critical feature in the quantum circuit of QAOA algorithm is that it consists
of two-qubit operators that commute. The flexibility in reordering the
two-qubit gates allows compiler optimizations to generate circuits with better
depths, gate count, and fidelity. However, it also imposes significant
challenges due to additional freedom exposed in the compilation. Prior studies
lack the following: (1) Performance guarantee, (2) Scalability, and (3)
Awareness of regularity in scalable hardware. We propose a structured method
that ensures linear depth for any compiled QAOA circuit on multi-dimensional
quantum architectures. We also demonstrate how our method runs on Google
Sycamore and IBM Non-linear architectures in a scalable manner and in linear
time. Overall, we can compile a circuit with up to 1024 qubits in 10 seconds
with a 3.8X speedup in depth, 17% reduction in gate count, and 18X improvement
for circuit ESP.
- Abstract(参考訳): 量子近似最適化アルゴリズム(Quantum Approximation Optimization Algorithm, QAOA)は、組合せ最適化問題の解法である。
QAOAアルゴリズムの量子回路における重要な特徴の1つは、通勤する2量子ビット演算子からなることである。
2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
しかし、これはまた、コンパイルで露呈される追加の自由のために重大な課題を課す。
以前の研究では、(1)性能保証、(2)スケーラビリティ、(3)スケーラブルなハードウェアにおける規則性の認識が欠けている。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
また、我々の手法がGoogle SycamoreやIBM Non-linearアーキテクチャ上で、スケーラブルかつ線形時間でどのように動作するかを実証する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
関連論文リスト
- Coqa: Blazing Fast Compiler Optimizations for QAOA [3.165516590671437]
我々は,異なる種類の量子ハードウェアに適したQAOA回路のコンパイルを最適化するために,Coqaを提案する。
平均的なゲート数の30%削減と,ベンチマーク全体のコンパイル時間の39倍の高速化を実現しています。
論文 参考訳(メタデータ) (2024-08-15T18:12:04Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
動的にフィールドプログラマブルな量子ビットアレイ(DPQA)が量子情報処理のための有望なプラットフォームとして登場した。
本稿では,複数の配列を含むDPQAアーキテクチャについて考察する。
DPQAをベースとしたコンパイル回路では,グリッド固定アーキテクチャに比べてスケーリングオーバヘッドが小さくなることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:13:10Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
ユニタリ合成は、量子回路を制限的量子ビット位相にマッピングしながら最適なマルチキュービットゲート数を達成する最適化手法である。
我々は,emphBQSKitフレームワークで構築されたトポロジ対応合成ツールであるTopASを紹介した。
論文 参考訳(メタデータ) (2022-06-27T21:59:30Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - QGo: Scalable Quantum Circuit Optimization Using Automated Synthesis [3.284627771501259]
NISQデバイスでは、CNOTのような2ビットゲートはシングルキュービットゲートよりもノイズが大きい。
量子回路合成は、任意のユニタリを量子ゲートの列に分解する過程である。
量子回路最適化のための階層的ブロック・バイ・ブロック最適化フレームワークQGoを提案する。
論文 参考訳(メタデータ) (2020-12-17T18:54:38Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。