論文の概要: Don't Click the Bait: Title Debiasing News Recommendation via Cross-Field Contrastive Learning
- arxiv url: http://arxiv.org/abs/2408.08538v1
- Date: Fri, 16 Aug 2024 05:51:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:51:49.552935
- Title: Don't Click the Bait: Title Debiasing News Recommendation via Cross-Field Contrastive Learning
- Title(参考訳): Don't Click the Bait: Title Debiasing News Recommendation via Cross-Field Contrastive Learning (英語)
- Authors: Yijie Shu, Xiaokun Zhang, Youlin Wu, Bo Xu, Liang Yang, Hongfei Lin,
- Abstract要約: 本稿では,クロスフィールドコントラスト学習(TDNR-C2)を用いたニュースレコメンデーションを提案する。
具体的には、様々な分野からニュースに関する多視点知識を抽出するために、多分野知識抽出モジュールを考案した。
本稿では,学習知識を肩書きや要約文と対比することで,バイアス除去を行うクロスフィールドコントラスト学習モジュールを提案する。
- 参考スコア(独自算出の注目度): 16.467106824672566
- License:
- Abstract: News recommendation emerges as a primary means for users to access content of interest from the vast amount of news. The title clickbait extensively exists in news domain and increases the difficulty for news recommendation to offer satisfactory services for users. Fortunately, we find that news abstract, as a critical field of news, aligns cohesively with the news authenticity. To this end, we propose a Title Debiasing News Recommendation with Cross-field Contrastive learning (TDNR-C2) to overcome the title bias by incorporating news abstract. Specifically, a multi-field knowledge extraction module is devised to extract multi-view knowledge about news from various fields. Afterwards, we present a cross-field contrastive learning module to conduct bias removal via contrasting learned knowledge from title and abstract fileds. Experimental results on a real-world dataset demonstrate the superiority of the proposed TDNR-C2 over existing state-of-the-art methods. Further analysis also indicates the significance of news abstract for title debiasing.
- Abstract(参考訳): ニュースレコメンデーションは、ユーザーが大量のニュースから興味のあるコンテンツにアクセスするための主要な手段として現れる。
クリックベイト」というタイトルは、ニュースドメインに広く存在し、ニュースレコメンデーションがユーザーに満足なサービスを提供するのが困難になる。
幸いなことに、ニュースの要約は、ニュースの重要な分野として、ニュースの真正性と結びついている。
そこで本稿では,クロスフィールド・コントラスト学習(TDNR-C2)を用いたニュース・リコメンデーションを提案する。
具体的には、様々な分野からニュースに関する多視点知識を抽出するために、多分野知識抽出モジュールを考案した。
その後、肩書きや要約文から学習知識を対比してバイアス除去を行うクロスフィールドコントラスト学習モジュールを提案する。
実世界のデータセットにおける実験結果は,既存の最先端手法よりも提案したTDNR-C2の方が優れていることを示す。
さらなる分析は、タイトル・デバイアスングにおけるニュース・抽象の重要性も示している。
関連論文リスト
- From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
本稿では,複数のニュース記事からの情報を中心的な話題に集め統合するための,新しいセンスメイキングツールと読書インタフェースであるNEWSSENSEを紹介する。
NEWSSENSEは、異なるソースからの関連記事にリンクすることで、ユーザの選択を集中的に根拠づけた記事を強化する。
我々のパイロット研究は、NEWSSENSEがユーザーが重要な情報を識別し、ニュース記事の信頼性を確認し、異なる視点を探索するのに役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-06T21:15:11Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
本稿では,マルチモーダルな文脈情報と著者の感情を共同でモデル化し,テキストの類似性と感情認識型フェイクニュース検出(TieFake)手法を提案する。
具体的には、BERT と ResNeSt を用いて、テキストや画像の表現を学習し、出版者感情抽出器を用いて、ニュースコンテンツにおける著者の主観的感情をキャプチャする。
論文 参考訳(メタデータ) (2023-04-19T04:47:36Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Designing and Evaluating Interfaces that Highlight News Coverage
Diversity Using Discord Questions [84.55145223950427]
本稿は,ニュース記事のための大規模なソースコレクションをナビゲートすることは,それ以上のガイダンスなしでは困難であることを示す。
本稿では,ニュース読者が読みながら範囲の多様性を発見することを目的とした,注釈記事,要約記事,質問表の3つのインタフェースを設計する。
論文 参考訳(メタデータ) (2023-02-17T16:59:31Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Neural News Recommendation with Event Extraction [0.0]
オンラインニュースレコメンデーションの重要な課題は、ユーザーが興味のある記事を見つけるのを助けることだ。
従来のニュースレコメンデーション手法では、ニュースやユーザ表現をエンコードするには不十分な単一ニュース情報を使用することが多い。
本稿では,これらの欠点を克服するためのイベント抽出に基づくニュースレコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-09T11:56:38Z) - Supervised Contrastive Learning for Multimodal Unreliable News Detection
in COVID-19 Pandemic [16.43888233012092]
本稿では,BERTに基づくマルチモーダルな信頼できないニュース検出フレームワークを提案する。
信頼できない記事からテキスト情報と視覚情報をキャプチャする。
信頼性の低いニュース検出において,本モデルが多くの競争ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2021-09-04T11:53:37Z) - SAFE: Similarity-Aware Multi-Modal Fake News Detection [8.572654816871873]
テキストや画像,あるいはその“ミスマッチ”に基づいて偽ニュースを検出する新しい手法を提案する。
このようなニューステキストと視覚情報の表現と関係性は共同で学習され、偽ニュースを予測するために使用される。
提案手法の有効性を実証した大規模実世界のデータについて広範な実験を行った。
論文 参考訳(メタデータ) (2020-02-19T02:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。