論文の概要: S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
- arxiv url: http://arxiv.org/abs/2408.08584v1
- Date: Fri, 16 Aug 2024 07:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:17:46.687080
- Title: S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
- Title(参考訳): S-RAF: 責任のある自律運転のためのシミュレーションに基づくロバストネス評価フレームワーク
- Authors: Daniel Omeiza, Pratik Somaiya, Jo-Ann Pattinson, Carolyn Ten-Holter, Jack Stilgoe, Marina Jirotka, Lars Kunze,
- Abstract要約: 自動運転のためのシミュレーションベースロバストネス評価フレームワーク(S-RAF)を紹介する。
堅牢性を定量化することで、S-RAFは開発者やステークホルダーが安全で責任のある運転エージェントを構築するのを助ける。
S-RAFは、テストコストの削減や、現実世界でテストするのが安全でないエッジケースを探索する機能など、大きなメリットがある。
- 参考スコア(独自算出の注目度): 6.559634434583204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence (AI) technology advances, ensuring the robustness and safety of AI-driven systems has become paramount. However, varying perceptions of robustness among AI developers create misaligned evaluation metrics, complicating the assessment and certification of safety-critical and complex AI systems such as autonomous driving (AD) agents. To address this challenge, we introduce Simulation-Based Robustness Assessment Framework (S-RAF) for autonomous driving. S-RAF leverages the CARLA Driving simulator to rigorously assess AD agents across diverse conditions, including faulty sensors, environmental changes, and complex traffic situations. By quantifying robustness and its relationship with other safety-critical factors, such as carbon emissions, S-RAF aids developers and stakeholders in building safe and responsible driving agents, and streamlining safety certification processes. Furthermore, S-RAF offers significant advantages, such as reduced testing costs, and the ability to explore edge cases that may be unsafe to test in the real world. The code for this framework is available here: https://github.com/cognitive-robots/rai-leaderboard
- Abstract(参考訳): 人工知能(AI)技術が進歩するにつれて、AI駆動システムの堅牢性と安全性が最重要になっている。
しかし、AI開発者の堅牢性に対するさまざまな認識は、自律運転(AD)エージェントのような安全クリティカルで複雑なAIシステムの評価と認定を複雑にし、不整合評価指標を作成する。
この課題に対処するために、自動運転のためのシミュレーションベースロバストネス評価フレームワーク(S-RAF)を導入する。
S-RAFはCARLAドライビングシミュレータを利用して、異常センサー、環境変化、複雑な交通状況を含む様々な条件でADエージェントを厳格に評価する。
S-RAFは、ロバスト性とその炭素排出量などの他の安全クリティカルな要因との関係を定量化することにより、開発者やステークホルダーが安全で責任ある運転エージェントの構築を支援し、安全認証プロセスの合理化に役立てる。
さらに、S-RAFは、テストコストの削減や、現実世界でテストするのが安全でないエッジケースを探索する機能など、大きなアドバンテージを提供する。
https://github.com/cognitive-robots/rai- Leaderboard.com/
関連論文リスト
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study [0.7851536646859475]
System-Theoretic Process Analysis (STPA)は、防衛や航空宇宙といった安全関連分野に適用される新しい手法である。
STPAは、分散システム開発とマルチアトラクション設計レベルを備えた自動車システム工学において、完全には有効でない前提条件を前提としている。
これは継続的開発とデプロイメントにおける保守性の問題と見なすことができる。
論文 参考訳(メタデータ) (2024-03-14T15:56:02Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications [1.6495054381576084]
本稿では,自律走行システムにおける人工知能(AI)アルゴリズムの役割と課題について考察する。
主な関心事は、AIモデルの初期のトレーニングデータを超えて一般化する能力(と必要性)に関連している。
本稿では、自律運転のような安全クリティカルなアプリケーションにおける過信AIモデルに関連するリスクについて検討する。
論文 参考訳(メタデータ) (2024-02-13T04:15:26Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
テスト、検証、検証 AD/ADASセーフティクリティカルなアプリケーションが大きな課題のひとつとして残っています。
安全クリティカルな学習可能システムの検証と検証を目的としたシミュレーションベースの開発プラットフォームについて説明する。
論文 参考訳(メタデータ) (2023-09-28T09:00:31Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
本稿では、自律制御、説明可能なAI(XAI)、規制コンプライアンスを統合するフレームワークを提案する。
フレームワークの目標を達成するのに役立つ、関連するXAIアプローチについて説明します。
論文 参考訳(メタデータ) (2021-11-20T05:06:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。