論文の概要: Lower Layers Matter: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
- arxiv url: http://arxiv.org/abs/2408.08769v2
- Date: Tue, 03 Jun 2025 15:05:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:08.888791
- Title: Lower Layers Matter: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
- Title(参考訳): 低層問題:真さに焦点をあてた多層核融合コントラストデコーディングによる幻覚を軽減する
- Authors: Dingwei Chen, Feiteng Fang, Shiwen Ni, Feng Liang, Xiping Hu, Ahmadreza Argha, Hamid Alinejad-Rokny, Min Yang, Chengming Li,
- Abstract要約: 大規模言語モデル (LLM) は様々な自然言語処理タスクにおいて例外的な性能を示した。
彼らは時に「幻覚」と呼ばれる現象である不正確で反事実的な出力を発生させる。
- 参考スコア(独自算出の注目度): 27.894293943142447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, they occasionally generate inaccurate and counterfactual outputs, a phenomenon commonly referred to as "hallucinations''. To tackle this issue, recent studies have explored contrastive decoding between the original model and an amateur model with induced hallucination, showing promising results. Nevertheless, this approach can disrupt the original LLM's output distribution due to coarse contrast and simple subtraction operations, potentially leading to errors. In this paper, we introduce a novel contrastive decoding framework, termed LOL (LOwer Layer Matters). Unlike prior methods that focus solely on the final layer, our approach integrates contrastive information from lower layers to enable multi-layer fusion during contrastive decoding. Additionally, we incorporate a truthfulness refocused module that leverages instruction guidance to further improve truthfulness in contrastive decoding. Extensive experiments on four publicly available datasets demonstrate that the LOL framework significantly mitigates hallucination while outperforming existing baselines in most cases. For reproducibility, we will release our code and data upon acceptance.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて例外的な性能を示している。
しかし、それらは時に「幻覚」と呼ばれる現象である不正確で反事実的な出力を生成する。
この問題に対処するため、近年の研究では、オリジナルのモデルと誘導幻覚を伴うアマチュアモデルとの対照的な復号化について検討し、有望な結果を示している。
それでもこのアプローチは、粗いコントラストと単純な減算演算によって元のLLMの出力分布を妨害し、エラーにつながる可能性がある。
本稿では,LOL(Lower Layer Matters)と呼ばれる新しいコントラストデコーディングフレームワークを提案する。
最終層のみにフォーカスする従来の手法とは異なり,本手法では下位層からのコントラスト情報を統合して,コントラスト復号時に多層融合を実現する。
さらに、命令指導を利用して、対照的な復号化における真理性をさらに向上する真理性再焦点モジュールを組み込んだ。
4つの公開データセットに対する大規模な実験により、LOLフレームワークは幻覚を著しく軽減し、ほとんどの場合、既存のベースラインを上回っていることが示された。
再現性のために、コードとデータを受理時にリリースします。
関連論文リスト
- Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において優れた性能を示す。
textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)。
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
MLLM(Multimodal Large Language Models)はしばしば幻覚現象を示す。
MLLM(DeCo)の新しい動的補正復号法を提案する。
広範に使用されているベンチマークでDeCoを評価し、ベースラインと比較して幻覚率を大きなマージンで削減できることを実証した。
論文 参考訳(メタデータ) (2024-10-15T16:57:44Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
CODE(Countering Description Contrastive Decoding)という,新しいコントラストベースのデコーディング手法を提案する。
提案手法は幻覚を著しく低減し,様々なベンチマークや最先端のLMM間の相互整合性を改善する。
論文 参考訳(メタデータ) (2024-06-04T03:04:21Z) - Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models [55.45444773200529]
大きな言語モデル(LLM)は印象的な自然言語能力を示すが、幻覚に苦しむ。
最近の研究は推論時の事実性を改善するための復号化技術に焦点を当てている。
論文 参考訳(メタデータ) (2024-04-14T19:45:35Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
論文 参考訳(メタデータ) (2024-03-27T16:04:47Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - Improving Factual Consistency of News Summarization by Contrastive Preference Optimization [65.11227166319546]
大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
本稿では,LLMの適合性を解消し,忠実で偽のコンテンツを生成するコントラスト優先最適化(CPO)を提案する。
論文 参考訳(メタデータ) (2023-10-30T08:40:16Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。