論文の概要: PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors
- arxiv url: http://arxiv.org/abs/2408.08802v1
- Date: Fri, 16 Aug 2024 15:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:03:59.333285
- Title: PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors
- Title(参考訳): PriorMapNet: オンラインベクタライズされたHDマップ構築をプリミティブで強化
- Authors: Rongxuan Wang, Xin Lu, Xiaoyang Liu, Xiaoyi Zou, Tongyi Cao, Ying Li,
- Abstract要約: 先行データを用いたオンラインベクトル化HDマップ構築を強化するために,PreferMapNetを導入する。
提案したPreferMapNetは,nuScenesおよびArgoverse2データセット上でのオンラインベクトル化HDマップ構築タスクにおいて,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 15.475364300374403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online vectorized High-Definition (HD) map construction is crucial for subsequent prediction and planning tasks in autonomous driving. Following MapTR paradigm, recent works have made noteworthy achievements. However, reference points are randomly initialized in mainstream methods, leading to unstable matching between predictions and ground truth. To address this issue, we introduce PriorMapNet to enhance online vectorized HD map construction with priors. We propose the PPS-Decoder, which provides reference points with position and structure priors. Fitted from the map elements in the dataset, prior reference points lower the learning difficulty and achieve stable matching. Furthermore, we propose the PF-Encoder to enhance the image-to-BEV transformation with BEV feature priors. Besides, we propose the DMD cross-attention, which decouples cross-attention along multi-scale and multi-sample respectively to achieve efficiency. Our proposed PriorMapNet achieves state-of-the-art performance in the online vectorized HD map construction task on nuScenes and Argoverse2 datasets. The code will be released publicly soon.
- Abstract(参考訳): オンラインベクトル化ハイディフィニション(HD)マップの構築は、自動運転におけるその後の予測と計画作業に不可欠である。
MapTRのパラダイムに従って、最近の研究は注目すべき成果を上げている。
しかし、参照ポイントは主流の手法でランダムに初期化され、予測と基底真理の不安定な一致につながる。
この問題に対処するため,オンラインベクター化HDマップ構築を事前で強化するために,PresideMapNetを導入する。
位置と構造を持つ参照ポイントを提供するPS-Decoderを提案する。
データセットのマップ要素から設定された事前参照ポイントは、学習困難を減らし、安定したマッチングを実現する。
さらに,BEV特徴量による画像からBEVへの変換を向上するPF-Encoderを提案する。
さらに,マルチスケールおよびマルチサンプルに沿って,それぞれクロスアテンションを分離して効率を向上するMDDクロスアテンションを提案する。
提案したPreferMapNetは,nuScenesおよびArgoverse2データセット上でのオンラインベクトル化HDマップ構築タスクにおいて,最先端のパフォーマンスを実現する。
コードはまもなく公開される予定だ。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding [8.857237929151795]
MFTPはMap-Free Trajectory Prediction法であり、いくつかの利点がある。
まず、推論中のHDマップの必要性を排除し、知識蒸留によるトレーニング中のマップ事前の恩恵を享受する。
第二に、空間的時間的エージェントの特徴を効果的に抽出し、それらを複数のトラジェクトリクエリに集約する新しい階層エンコーダを提案する。
論文 参考訳(メタデータ) (2024-11-17T04:50:44Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が,有望なソリューションとして浮上している。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - ADMap: Anti-disturbance framework for reconstructing online vectorized
HD map [9.218463154577616]
本稿では, 反ゆらぎマップ再構築フレームワーク (ADMap) を提案する。
点次ジッタを緩和するため、このフレームワークは、マルチスケール知覚ネック、インスタンスインタラクティブアテンション(IIA)、ベクトル方向差損失(VDDL)の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2024-01-24T01:37:27Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - ScalableMap: Scalable Map Learning for Online Long-Range Vectorized HD
Map Construction [42.874195888422584]
オンライン長範囲ベクトル化ハイデフィニション(HD)マップ構築のための,オンボードカメラセンサを用いた新しいエンドツーエンドパイプラインを提案する。
地図要素の特性を利用して地図構築の性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T09:46:24Z) - PivotNet: Vectorized Pivot Learning for End-to-end HD Map Construction [10.936405710245625]
我々は、ピボットベースの地図表現を統一したPivotNetという、シンプルで効果的なアーキテクチャを提案する。
PivotNet は他の SOTA よりも5.9 mAP の方がはるかに優れている。
論文 参考訳(メタデータ) (2023-08-31T05:43:46Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
より優れた感度を有し,現実の自律運転シナリオに適した,新化に基づく評価指標を提案する。
また、精度の高い出力に微分可能化を適用し、HDマップの幾何学的監視を行う新しいフレームワークであるMapVR(Map Vectorization via Rasterization)を提案する。
論文 参考訳(メタデータ) (2023-06-18T08:51:14Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。