PFDiff: Training-free Acceleration of Diffusion Models through the Gradient Guidance of Past and Future
- URL: http://arxiv.org/abs/2408.08822v2
- Date: Wed, 18 Sep 2024 13:50:46 GMT
- Title: PFDiff: Training-free Acceleration of Diffusion Models through the Gradient Guidance of Past and Future
- Authors: Guangyi Wang, Yuren Cai, Lijiang Li, Wei Peng, Songzhi Su,
- Abstract summary: Diffusion Probabilistic Models (DPMs) have shown remarkable potential in image generation, but their sampling efficiency is hindered by the need for numerous denoising steps.
We propose PFDiff, a novel training-free and timestep-skipping strategy, which enables existing fast ODE solvers to operate with fewer NFE.
- Score: 4.595421654683656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Probabilistic Models (DPMs) have shown remarkable potential in image generation, but their sampling efficiency is hindered by the need for numerous denoising steps. Most existing solutions accelerate the sampling process by proposing fast ODE solvers. However, the inevitable discretization errors of the ODE solvers are significantly magnified when the number of function evaluations (NFE) is fewer. In this work, we propose PFDiff, a novel training-free and orthogonal timestep-skipping strategy, which enables existing fast ODE solvers to operate with fewer NFE. Specifically, PFDiff initially utilizes gradient replacement from past time steps to predict a "springboard". Subsequently, it employs this "springboard" along with foresight updates inspired by Nesterov momentum to rapidly update current intermediate states. This approach effectively reduces unnecessary NFE while correcting for discretization errors inherent in first-order ODE solvers. Experimental results demonstrate that PFDiff exhibits flexible applicability across various pre-trained DPMs, particularly excelling in conditional DPMs and surpassing previous state-of-the-art training-free methods. For instance, using DDIM as a baseline, we achieved 16.46 FID (4 NFE) compared to 138.81 FID with DDIM on ImageNet 64x64 with classifier guidance, and 13.06 FID (10 NFE) on Stable Diffusion with 7.5 guidance scale.
Related papers
- Enhancing and Accelerating Diffusion-Based Inverse Problem Solving through Measurements Optimization [66.17291150498276]
We introduce textbfMeasurements textbfOptimization (MO), a more efficient plug-and-play module for integrating measurement information at each step of the inverse problem-solving process.
By using MO, we establish state-of-the-art (SOTA) performance across multiple tasks, with key advantages.
arXiv Detail & Related papers (2024-12-05T07:44:18Z) - Leveraging Previous Steps: A Training-free Fast Solver for Flow Diffusion [7.3604864243987365]
Flow diffusion models (FDMs) have recently shown potential in generation tasks due to the high generation quality.
The current ordinary differential equation (ODE) solver for FDMs, e.g., the solver, still suffers from slow generation.
We propose a novel training-free flow-solver to reduce NFE while maintaining high-quality generation.
arXiv Detail & Related papers (2024-11-12T08:17:15Z) - Truncated Consistency Models [57.50243901368328]
Training consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints.
We empirically find that this training paradigm limits the one-step generation performance of consistency models.
We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution.
arXiv Detail & Related papers (2024-10-18T22:38:08Z) - Adversarial Schrödinger Bridge Matching [66.39774923893103]
Iterative Markovian Fitting (IMF) procedure alternates between Markovian and reciprocal projections of continuous-time processes.
We propose a novel Discrete-time IMF (D-IMF) procedure in which learning of processes is replaced by learning just a few transition probabilities in discrete time.
We show that our D-IMF procedure can provide the same quality of unpaired domain translation as the IMF, using only several generation steps instead of hundreds.
arXiv Detail & Related papers (2024-05-23T11:29:33Z) - DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model
Statistics [23.030972042695275]
Diffusion models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling.
Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs.
We propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error.
arXiv Detail & Related papers (2023-10-20T04:23:12Z) - Towards More Accurate Diffusion Model Acceleration with A Timestep
Aligner [84.97253871387028]
A diffusion model, which is formulated to produce an image using thousands of denoising steps, usually suffers from a slow inference speed.
We propose a timestep aligner that helps find a more accurate integral direction for a particular interval at the minimum cost.
Experiments show that our plug-in design can be trained efficiently and boost the inference performance of various state-of-the-art acceleration methods.
arXiv Detail & Related papers (2023-10-14T02:19:07Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
arXiv Detail & Related papers (2023-05-24T21:39:27Z) - Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs [21.08236758778604]
We propose several improved techniques for maximum likelihood estimation for diffusion ODEs.
For training, we propose velocity parameterization and explore variance reduction techniques for faster convergence.
For evaluation, we propose a novel training-free truncated-normal dequantization to fill the training-evaluation gap commonly existing in diffusion ODEs.
arXiv Detail & Related papers (2023-05-06T05:21:24Z) - On Accelerating Diffusion-Based Sampling Process via Improved
Integration Approximation [12.882586878998579]
A popular approach to sample a diffusion-based generative model is to solve an ordinary differential equation (ODE)
We consider accelerating several popular ODE-based sampling processes by optimizing certain coefficients via improved integration approximation (IIA)
We show that considerably better FID scores can be achieved by using IIA-EDM, IIA-DDIM, and IIA-DPM-r than the original counterparts.
arXiv Detail & Related papers (2023-04-22T06:06:28Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Learning to Efficiently Sample from Diffusion Probabilistic Models [49.58748345998702]
Denoising Diffusion Probabilistic Models (DDPMs) can yield high-fidelity samples and competitive log-likelihoods across a range of domains.
We introduce an exact dynamic programming algorithm that finds the optimal discrete time schedules for any pre-trained DDPM.
arXiv Detail & Related papers (2021-06-07T17:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.