Enhancing and Accelerating Diffusion-Based Inverse Problem Solving through Measurements Optimization
- URL: http://arxiv.org/abs/2412.03941v1
- Date: Thu, 05 Dec 2024 07:44:18 GMT
- Title: Enhancing and Accelerating Diffusion-Based Inverse Problem Solving through Measurements Optimization
- Authors: Tianyu Chen, Zhendong Wang, Mingyuan Zhou,
- Abstract summary: We introduce textbfMeasurements textbfOptimization (MO), a more efficient plug-and-play module for integrating measurement information at each step of the inverse problem-solving process.
By using MO, we establish state-of-the-art (SOTA) performance across multiple tasks, with key advantages.
- Score: 66.17291150498276
- License:
- Abstract: Diffusion models have recently demonstrated notable success in solving inverse problems. However, current diffusion model-based solutions typically require a large number of function evaluations (NFEs) to generate high-quality images conditioned on measurements, as they incorporate only limited information at each step. To accelerate the diffusion-based inverse problem-solving process, we introduce \textbf{M}easurements \textbf{O}ptimization (MO), a more efficient plug-and-play module for integrating measurement information at each step of the inverse problem-solving process. This method is comprehensively evaluated across eight diverse linear and nonlinear tasks on the FFHQ and ImageNet datasets. By using MO, we establish state-of-the-art (SOTA) performance across multiple tasks, with key advantages: (1) it operates with no more than 100 NFEs, with phase retrieval on ImageNet being the sole exception; (2) it achieves SOTA or near-SOTA results even at low NFE counts; and (3) it can be seamlessly integrated into existing diffusion model-based solutions for inverse problems, such as DPS \cite{chung2022diffusion} and Red-diff \cite{mardani2023variational}. For example, DPS-MO attains a peak signal-to-noise ratio (PSNR) of 28.71 dB on the FFHQ 256 dataset for high dynamic range imaging, setting a new SOTA benchmark with only 100 NFEs, whereas current methods require between 1000 and 4000 NFEs for comparable performance.
Related papers
- FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
Inference at a scaled resolution leads to repetitive patterns and structural distortions.
We propose two simple modules that combine to solve these issues.
Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training.
arXiv Detail & Related papers (2024-11-27T17:51:44Z) - Consistency Diffusion Bridge Models [25.213664260896103]
Diffusion bridge models (DDBMs) build processes between fixed data endpoints based on a reference diffusion process.
DDBMs' sampling process typically requires hundreds of network evaluations to achieve decent performance.
We propose two paradigms: consistency bridge distillation and consistency bridge training, which is flexible to apply on DDBMs with broad design choices.
arXiv Detail & Related papers (2024-10-30T02:04:23Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
arXiv Detail & Related papers (2024-07-17T15:57:50Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
We propose Deep Data Consistency (DDC) to update the data consistency step with a deep learning model when solving inverse problems with diffusion models.
In comparison with state-of-the-art methods in linear and non-linear tasks, DDC demonstrates its outstanding performance of both similarity and realness metrics.
arXiv Detail & Related papers (2024-05-17T12:54:43Z) - FlowDepth: Decoupling Optical Flow for Self-Supervised Monocular Depth Estimation [8.78717459496649]
We propose FlowDepth, where a Dynamic Motion Flow Module (DMFM) decouples the optical flow by a mechanism-based approach and warps the dynamic regions thus solving the mismatch problem.
For the unfairness of photometric errors caused by high-freq and low-texture regions, we use Depth-Cue-Aware Blur (DCABlur) and Cost-Volume sparsity loss respectively at the input and the loss level to solve the problem.
arXiv Detail & Related papers (2024-03-28T10:31:23Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
We propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM)
Our approach yields promising fusion results in infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2023-03-13T04:06:42Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.