論文の概要: Optimal Symmetries in Binary Classification
- arxiv url: http://arxiv.org/abs/2408.08823v1
- Date: Fri, 16 Aug 2024 16:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 14:53:53.779754
- Title: Optimal Symmetries in Binary Classification
- Title(参考訳): 二項分類における最適対称性
- Authors: Vishal S. Ngairangbam, Michael Spannowsky,
- Abstract要約: 一般化と標本効率を最適化するためには,適切な群対称性を選択することが重要である。
我々は,群同変ニューラルネットワークを設計するための理論的基盤を構築し,対称性の選択をデータの基本となる確率分布と整合させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the role of group symmetries in binary classification tasks, presenting a novel framework that leverages the principles of Neyman-Pearson optimality. Contrary to the common intuition that larger symmetry groups lead to improved classification performance, our findings show that selecting the appropriate group symmetries is crucial for optimising generalisation and sample efficiency. We develop a theoretical foundation for designing group equivariant neural networks that align the choice of symmetries with the underlying probability distributions of the data. Our approach provides a unified methodology for improving classification accuracy across a broad range of applications by carefully tailoring the symmetry group to the specific characteristics of the problem. Theoretical analysis and experimental results demonstrate that optimal classification performance is not always associated with the largest equivariant groups possible in the domain, even when the likelihood ratio is invariant under one of its proper subgroups, but rather with those subgroups themselves. This work offers insights and practical guidelines for constructing more effective group equivariant architectures in diverse machine-learning contexts.
- Abstract(参考訳): 我々は二項分類タスクにおける群対称性の役割を探求し、ナイマン・ピアソン最適性の原理を生かした新しい枠組みを提案する。
より大きな対称性群が分類性能の向上につながるという一般的な直観とは対照的に, 適切な群対称性を選択することは, 一般化と標本効率の最適化に不可欠であることを示す。
我々は,群同変ニューラルネットワークを設計するための理論的基盤を構築し,対称性の選択をデータの基本となる確率分布と整合させる。
提案手法は,対称性群を問題の特徴に合わせて慎重に調整することにより,広範囲のアプリケーションにまたがる分類精度を向上させる統一的な手法を提供する。
理論的解析と実験結果から、最適分類性能は、必ずしもドメイン内で可能な最大の同変群と関係しているわけではないことが示される。
この研究は、多様な機械学習コンテキストにおいてより効果的なグループ同変アーキテクチャを構築するための洞察と実践的なガイドラインを提供する。
関連論文リスト
- Adaptive Transfer Clustering: A Unified Framework [2.3144964550307496]
本稿では,未知の相違点が存在する場合の共通性を自動的に活用するアダプティブ・トランスファー・クラスタリング(ATC)アルゴリズムを提案する。
これはガウス混合モデル、ブロックモデル、潜在クラスモデルを含む幅広い統計モデルに適用される。
論文 参考訳(メタデータ) (2024-10-28T17:57:06Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Equivariant score-based generative models provably learn distributions with symmetries efficiently [7.90752151686317]
実験的な研究により、対称性を生成モデルに組み込むことで、より優れた一般化とサンプリング効率が得られることが示されている。
我々は,ある群対称性に対して不変な分布を学習するためのスコアベース生成モデル(SGM)の最初の理論的解析と保証を提供する。
論文 参考訳(メタデータ) (2024-10-02T05:14:28Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Architectural Optimization over Subgroups for Equivariant Neural
Networks [0.0]
準同値緩和同型と$[G]$-mixed同変層を提案し、部分群上の同値制約で演算する。
進化的および微分可能なニューラルアーキテクチャ探索(NAS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-11T14:37:29Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Universal Approximation Theorem for Equivariant Maps by Group CNNs [14.810452619505137]
本稿では,CNNによる同値写像の普遍近似定理の統一手法を提案する。
その大きな利点として、非コンパクト群に対する無限次元空間間の非線形同変写像を扱うことができる。
論文 参考訳(メタデータ) (2020-12-27T07:09:06Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
群等価ニューラルネットワークは群不変ニューラルネットワークの構成要素として用いられる。
我々は、文学の範囲を、ディープラーニングモデルの顕著な構築ブロックとして現れつつある自己注意にまで広げる。
任意のリー群とその離散部分群に同値なリー自己結合層からなる構造であるリー変換器を提案する。
論文 参考訳(メタデータ) (2020-12-20T11:02:49Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
摂動下での群付き変数選択のための不確実性セットを用いた分布ロバスト最適化(DRO)の定式化を提案する。
我々は,サンプル外損失と推定バイアスの確率的境界を証明し,推定器の群化効果を確立する。
我々の定式化は,群レベルでの空間性を促進する解釈可能で同相なモデルを生成することを示す。
論文 参考訳(メタデータ) (2020-06-10T22:32:52Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。