論文の概要: When Trust is Zero Sum: Automation Threat to Epistemic Agency
- arxiv url: http://arxiv.org/abs/2408.08846v2
- Date: Mon, 19 Aug 2024 02:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 13:08:14.127586
- Title: When Trust is Zero Sum: Automation Threat to Epistemic Agency
- Title(参考訳): 信頼がゼロの時 - 疫病対策への自動化の脅威
- Authors: Emmie Malone, Saleh Afroogh, Jason DCruz, Kush R Varshney,
- Abstract要約: 労働者が仕事を維持している場合であっても、その内部の代理店は格段に格下げされる可能性がある。
人間の従業員と一緒に働くアルゴリズムを設計するなど、仕事の維持にフォーカスしたソリューションは、これらの害を和らげるだけである。
- 参考スコア(独自算出の注目度): 15.3187914835649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI researchers and ethicists have long worried about the threat that automation poses to human dignity, autonomy, and to the sense of personal value that is tied to work. Typically, proposed solutions to this problem focus on ways in which we can reduce the number of job losses which result from automation, ways to retrain those that lose their jobs, or ways to mitigate the social consequences of those job losses. However, even in cases where workers keep their jobs, their agency within them might be severely downgraded. For instance, human employees might work alongside AI but not be allowed to make decisions or not be allowed to make decisions without consulting with or coming to agreement with the AI. This is a kind of epistemic harm (which could be an injustice if it is distributed on the basis of identity prejudice). It diminishes human agency (in constraining people's ability to act independently), and it fails to recognize the workers' epistemic agency as qualified experts. Workers, in this case, aren't given the trust they are entitled to. This means that issues of human dignity remain even in cases where everyone keeps their job. Further, job retention focused solutions, such as designing an algorithm to work alongside the human employee, may only enable these harms. Here, we propose an alternative design solution, adversarial collaboration, which addresses the traditional retention problem of automation, but also addresses the larger underlying problem of epistemic harms and the distribution of trust between AI and humans in the workplace.
- Abstract(参考訳): AI研究者や倫理学者は、自動化が人間の尊厳、自律性、そして仕事と結びつく個人的価値の感覚にもたらす脅威を長い間心配してきた。
通常、この問題に対する解決策は、自動化によって生じる失業数を減らす方法、失業した失業者を再訓練する方法、失業者の社会的影響を緩和する方法に焦点が当てられている。
しかし、労働者が仕事を維持している場合であっても、その内部の代理店は格段に格下げされる可能性がある。
例えば、人間の従業員はAIと一緒に働くかもしれませんが、意思決定は許されませんし、AIとの相談や合意なしに意思決定は許されません。
これは一種のてんかんの害(アイデンティティの偏見に基づいて配布されている場合の不正である可能性がある)である。
人事機関を減らし(人々が独立して行動する能力を制限する)、労働者の疫学機関を資格のある専門家として認識することができない。
この場合、労働者は自分に与えられる信頼を与えられません。
これは、誰もが仕事を続ける場合でも、人間の尊厳の問題が残ることを意味する。
さらに、人間の従業員と一緒に働くアルゴリズムを設計するなど、仕事の維持にフォーカスしたソリューションは、これらの害を和らげるだけである。
ここでは、従来のオートメーションの維持問題に対処する対人コラボレーションという代替設計ソリューションを提案し、また、職場でのAIと人間間の信頼の分配やてんかん害の大きな問題にも対処する。
関連論文リスト
- Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - AI, Pluralism, and (Social) Compensation [1.5442389863546546]
ユーザ集団における多元的価値に対応する戦略は、AIシステムをパーソナライズすることである。
もしAIが個々の個人の特定の値に適応できるなら、多元主義の課題の多くを回避できる可能性がある。
しかし、人間-AIチームにとって成功の外部尺度がある場合、適応型AIシステムは人間のチームメイトを補うための戦略を開発することができる。
論文 参考訳(メタデータ) (2024-04-30T04:41:47Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AIシステムは人間の道徳的判断や決定を理解し、解釈し、予測しなければなりません。
AIの安全性に対する中心的な課題は、人間の道徳心の柔軟性を捉えることだ。
ルール破りの質問応答からなる新しい課題セットを提案する。
論文 参考訳(メタデータ) (2022-10-04T09:04:27Z) - On Avoiding Power-Seeking by Artificial Intelligence [93.9264437334683]
私たちは、非常にインテリジェントなAIエージェントの振る舞いと人間の関心を協調する方法を知りません。
私は、世界に限られた影響を与え、自律的に力を求めないスマートAIエージェントを構築できるかどうか調査する。
論文 参考訳(メタデータ) (2022-06-23T16:56:21Z) - On the Influence of Explainable AI on Automation Bias [0.0]
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
論文 参考訳(メタデータ) (2022-04-19T12:54:23Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
本稿では,人間とAIの相互作用を逐次ゲームとして新たに定式化する。
このケースでは、有界人間によるより良い意思決定を支援するというAIの問題は、ベイズ対応のPOMDPに還元される。
我々は、機械が自身の限界と人間の助けを借りて改善する方法について議論する。
論文 参考訳(メタデータ) (2022-04-03T21:00:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。