GeoTransformer: Enhancing Urban Forecasting with Geospatial Attention Mechanisms
- URL: http://arxiv.org/abs/2408.08852v1
- Date: Fri, 16 Aug 2024 17:26:42 GMT
- Title: GeoTransformer: Enhancing Urban Forecasting with Geospatial Attention Mechanisms
- Authors: Yuhao Jia, Zile Wu, Shengao Yi, Yifei Sun,
- Abstract summary: We introduce GeoTransformer, a structure that synergizes the Transformer architecture with geospatial statistics prior.
GeoTransformer employs an innovative geospatial attention mechanism to incorporate extensive urban information and spatial dependencies into a unified predictive model.
- Score: 1.7263971073408702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements have focused on encoding urban spatial information into high-dimensional spaces, with notable efforts dedicated to integrating sociodemographic data and satellite imagery. These efforts have established foundational models in this field. However, the effective utilization of these spatial representations for urban forecasting applications remains under-explored. To address this gap, we introduce GeoTransformer, a novel structure that synergizes the Transformer architecture with geospatial statistics prior. GeoTransformer employs an innovative geospatial attention mechanism to incorporate extensive urban information and spatial dependencies into a unified predictive model. Specifically, we compute geospatial weighted attention scores between the target region and surrounding regions and leverage the integrated urban information for predictions. Extensive experiments on GDP and ride-share demand prediction tasks demonstrate that GeoTransformer significantly outperforms existing baseline models, showcasing its potential to enhance urban forecasting tasks.
Related papers
- Enhancing GeoAI and location encoding with spatial point pattern statistics: A Case Study of Terrain Feature Classification [2.724802833397066]
This study introduces a novel approach to terrain feature classification incorporating spatial point pattern statistics into deep learning models.
We improve the GeoAI model by a knowledge driven approach to integrate both first-order and second-order effects of point patterns.
arXiv Detail & Related papers (2024-11-21T20:17:41Z) - Geometric Feature Enhanced Knowledge Graph Embedding and Spatial Reasoning [8.561588656662419]
Geospatial Knowledge Graphs (GeoKGs) model geoentities and spatial relationships in an interconnected manner.
Existing methods for mining and reasoning from GeoKGs, such as popular knowledge graph embedding (KGE) techniques, lack geographic awareness.
This study aims to enhance general-purpose KGE by developing new strategies and integrating geometric features of spatial relations.
arXiv Detail & Related papers (2024-10-24T00:53:48Z) - An Ensemble Framework for Explainable Geospatial Machine Learning Models [16.010404125829876]
We introduce an integrated framework that merges local spatial weighting scheme, Explainable Artificial Intelligence (XAI) and cutting-edge machine learning technologies.
This framework is verified to enhance the interpretability and accuracy of predictions in both geographic regression and classification.
It significantly boosts prediction precision, offering a novel approach to understanding spatial phenomena.
arXiv Detail & Related papers (2024-03-05T21:12:10Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
Geographic variance in satellite imagery impacts the ability of machine learning models to generalise to new regions.
We model geographic generalisation in medium resolution Landsat-8 satellite imagery as a continuous domain adaptation problem.
We develop a dataset spatially distributed across the entire continental United States.
arXiv Detail & Related papers (2022-04-14T15:41:39Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.