論文の概要: GeoTransformer: Enhancing Urban Forecasting with Dependency Retrieval and Geospatial Attention
- arxiv url: http://arxiv.org/abs/2408.08852v2
- Date: Thu, 19 Dec 2024 19:55:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:42.567078
- Title: GeoTransformer: Enhancing Urban Forecasting with Dependency Retrieval and Geospatial Attention
- Title(参考訳): GeoTransformer: 従属検索と地理空間アテンションによる都市予測の強化
- Authors: Yuhao Jia, Zile Wu, Shengao Yi, Yifei Sun,
- Abstract要約: 本研究では,高次元空間埋め込みと動的空間モデリングを組み合わせたフレームワークを提案する。
GeoTransformer は,(1) 空間的依存を特定できる依存検索モジュール,(2) グローバルな都市情報を活用した地理空間的アテンション機構の2つの革新を特徴としている。
- 参考スコア(独自算出の注目度): 1.7263971073408702
- License:
- Abstract: Recent advances in urban forecasting have leveraged high-dimensional spatial data through two primary approaches: graph-based methods that rely on predefined spatial structures and region-based methods that use satellite imagery for local features. Although these methods have laid an important foundation, they struggle to integrate holistic urban information and dynamically model spatial dependencies. To address this gap, we propose GeoTransformer, a framework combining high-dimensional regional embeddings with dynamic spatial modeling. GeoTransformer features two innovations: (1) a dependency retrieval module identifying spatial dependencies to select relevant regions, and (2) a geospatial attention mechanism leveraging global urban information. These components unify structural and global urban information for better predictions. Extensive experiments on GDP and ride-share demand forecasting show that GeoTransformer outperforms baselines, highlighting its effectiveness in advancing urban forecasting tasks.
- Abstract(参考訳): 都市予測の最近の進歩は、事前に定義された空間構造に依存するグラフベースの手法と、局地的な特徴に衛星画像を使用する地域ベースの手法の2つの主要なアプローチを通じて、高次元空間データを活用してきた。
これらの手法は重要な基盤となっているが、総合的な都市情報の統合や空間依存の動的モデル化に苦慮している。
このギャップに対処するために,高次元空間埋め込みと動的空間モデリングを組み合わせたGeoTransformerを提案する。
GeoTransformer は,(1) 空間的依存を特定できる依存検索モジュール,(2) グローバルな都市情報を活用した地理空間的アテンション機構の2つの革新を特徴としている。
これらのコンポーネントは、より良い予測のために、構造的およびグローバルな都市情報を統一する。
GDPと配車需要予測に関する大規模な実験は、GeoTransformerがベースラインを上回り、都市予測タスクの進行における効果を浮き彫りにしていることを示している。
関連論文リスト
- Enhancing GeoAI and location encoding with spatial point pattern statistics: A Case Study of Terrain Feature Classification [2.724802833397066]
本研究では,深層学習モデルに空間点パターン統計を組み込んだ地形特徴分類手法を提案する。
我々は、ポイントパターンの1次効果と2次効果の両方を統合する知識駆動アプローチにより、GeoAIモデルを改善する。
論文 参考訳(メタデータ) (2024-11-21T20:17:41Z) - Geometric Feature Enhanced Knowledge Graph Embedding and Spatial Reasoning [8.561588656662419]
Geospatial Knowledge Graphs (GeoKGs) は地理と空間関係を相互にモデル化する。
一般的な知識グラフ埋め込み(KGE)技術のような、GeoKGからの採掘と推論のための既存の手法は、認識を欠いている。
本研究の目的は,新しい戦略を開発し,空間関係の幾何学的特徴を統合することで汎用KGEを強化することである。
論文 参考訳(メタデータ) (2024-10-24T00:53:48Z) - An Ensemble Framework for Explainable Geospatial Machine Learning Models [16.010404125829876]
本稿では,局所空間重み付け手法,説明可能な人工知能(XAI),最先端機械学習技術を融合した統合フレームワークを提案する。
この枠組みは、地理的回帰と分類の両方において、予測の解釈可能性と精度を高めるために検証される。
これは予測精度を大幅に向上させ、空間現象を理解するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-03-05T21:12:10Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
そこで本稿は,IBM-NASAのPrithviによる地空間基盤モデルの性能評価を行い,地空間解析の重要課題である洪水浸水マッピングを支援する。
実験では、ベンチマークデータセットであるSen1Floods11を使用し、モデルの予測可能性、一般化可能性、転送可能性を評価する。
以上の結果から, 未確認領域におけるセグメンテーションにおけるPrithviモデルの性能上の優位性が示された。
論文 参考訳(メタデータ) (2023-09-25T19:50:47Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
インフラ・土地利用情報に基づく通勤フローの予測は都市計画・公共政策開発に不可欠である。
重力モデルのような従来のモデルは、主に物理原理から派生し、現実のシナリオにおける予測力によって制限される。
本研究では,空間的相関を空間的コンテキスト情報から捉えて,通勤フロー予測を行うモデルであるGeo-contextual Multitask Embedding Learner (GMEL)を提案する。
論文 参考訳(メタデータ) (2020-05-04T17:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。