論文の概要: An Ensemble Framework for Explainable Geospatial Machine Learning Models
- arxiv url: http://arxiv.org/abs/2403.03328v1
- Date: Tue, 5 Mar 2024 21:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 16:57:07.803779
- Title: An Ensemble Framework for Explainable Geospatial Machine Learning Models
- Title(参考訳): 説明可能な地理空間機械学習モデルのためのアンサンブルフレームワーク
- Authors: Lingbo Liu
- Abstract要約: 本稿では,局所空間重み付け手法,説明可能な人工知能(XAI),最先端機械学習技術を融合した統合フレームワークを提案する。
この枠組みは、地理的回帰と分類の両方において、予測の解釈可能性と精度を高めるために検証される。
これは予測精度を大幅に向上させ、空間現象を理解するための新しいアプローチを提供する。
- 参考スコア(独自算出の注目度): 16.010404125829876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing spatial varying effect is pivotal in geographic analysis. Yet,
accurately capturing and interpreting this variability is challenging due to
the complexity and non-linearity of geospatial data. Herein, we introduce an
integrated framework that merges local spatial weighting scheme, Explainable
Artificial Intelligence (XAI), and cutting-edge machine learning technologies
to bridge the gap between traditional geographic analysis models and general
machine learning approaches. Through tests on synthetic datasets, this
framework is verified to enhance the interpretability and accuracy of
predictions in both geographic regression and classification by elucidating
spatial variability. It significantly boosts prediction precision, offering a
novel approach to understanding spatial phenomena.
- Abstract(参考訳): 空間変化の影響を分析することは地理的解析において重要である。
しかし、地理空間データの複雑さと非線形性から、この変動を正確に捉えて解釈することは困難である。
本稿では,局所的な空間重み付けスキーム,説明可能な人工知能(xai),最先端の機械学習技術を融合して,従来の地理的解析モデルと一般的な機械学習アプローチとのギャップを埋めるための統合フレームワークを提案する。
合成データセットのテストを通じて,空間変動の解明により,地理的回帰と分類の両面での予測の解釈可能性と精度を高めることを検証する。
これは予測精度を大幅に向上させ、空間現象を理解するための新しいアプローチを提供する。
関連論文リスト
- Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics [0.0]
時空間社会経済力学をモデル化するためのデータ駆動型機械学習手法を提案する。
我々の研究結果は、ボルチモアのケーススタディから、この機械学習で強化された粗い粒度モデルが強力な機器であることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:12:46Z) - Controllable seismic velocity synthesis using generative diffusion
models [4.742123770879715]
本研究では, 地震波速度合成のための条件付き生成拡散モデルを提案する。
このアプローチは、予測された目標分布と密接に一致する地震波速度の生成を可能にする。
OpenFWIデータセット上での拡散モデルのトレーニングにより,本手法の柔軟性と有効性を示す。
論文 参考訳(メタデータ) (2024-02-09T09:41:26Z) - Improve State-Level Wheat Yield Forecasts in Kazakhstan on GEOGLAM's EO
Data by Leveraging A Simple Spatial-Aware Technique [1.433758865948252]
我々は,カザフスタンにおけるクロスリージョン収率の不均一性に明示的に対処する,ステートワイド加法バイアスと呼ばれる手法を提案し,検討する。
本手法では, RMSE全体の8.9%, 州別RMSEの28.37%を削減した。
状態ワイド加算バイアスの有効性は、機械学習の性能を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2023-06-01T19:35:13Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
地理空間機械学習モデルと地図は、科学と政策の下流分析にますます使われている。
空間機械学習出力の正確な測定方法は議論の的となっている。
本稿では,グローバルあるいはリモートセンシングされたデータセットを用いた地理空間機械学習におけるモデル評価のユニークな課題について述べる。
論文 参考訳(メタデータ) (2023-03-31T14:24:06Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z) - Geostatistical Learning: Challenges and Opportunities [0.0]
本稿では,地理統計学的(移動)学習問題を紹介し,地理空間データからの学習の課題を説明する。
合成ガウス過程データとニュージーランドの地球物理調査の実データを用いた実験は、いずれの手法も地理空間的文脈におけるモデル選択に適していないことを示している。
論文 参考訳(メタデータ) (2021-02-17T14:33:15Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。