Accelerating Giant Impact Simulations with Machine Learning
- URL: http://arxiv.org/abs/2408.08873v2
- Date: Wed, 25 Sep 2024 18:02:04 GMT
- Title: Accelerating Giant Impact Simulations with Machine Learning
- Authors: Caleb Lammers, Miles Cranmer, Sam Hadden, Shirley Ho, Norman Murray, Daniel Tamayo,
- Abstract summary: Constraining planet formation models based on the observed exoplanet population requires generating large samples of synthetic planetary systems.
A significant bottleneck is simulating the giant impact phase, during which planetary embryos evolve gravitationally and combine to form planets.
We present a machine learning (ML) approach to predicting collisional outcomes in multiplanet systems.
- Score: 0.8325032895114773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constraining planet formation models based on the observed exoplanet population requires generating large samples of synthetic planetary systems, which can be computationally prohibitive. A significant bottleneck is simulating the giant impact phase, during which planetary embryos evolve gravitationally and combine to form planets, which may themselves experience later collisions. To accelerate giant impact simulations, we present a machine learning (ML) approach to predicting collisional outcomes in multiplanet systems. Trained on more than 500,000 $N$-body simulations of three-planet systems, we develop an ML model that can accurately predict which two planets will experience a collision, along with the state of the post-collision planets, from a short integration of the system's initial conditions. Our model greatly improves on non-ML baselines that rely on metrics from dynamics theory, which struggle to accurately predict which pair of planets will experience a collision. By combining with a model for predicting long-term stability, we create an ML-based giant impact emulator, which can predict the outcomes of giant impact simulations with reasonable accuracy and a speedup of up to four orders of magnitude. We expect our model to enable analyses that would not otherwise be computationally feasible. As such, we release our training code, along with an easy-to-use API for our collision outcome model and giant impact emulator.
Related papers
- Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - ELSA -- Enhanced latent spaces for improved collider simulations [0.1450405446885067]
Simulations play a key role for inference in collider physics.
We explore various approaches for enhancing the precision of simulations using machine learning.
We find that modified simulations can achieve sub-percent precision across a wide range of phase space.
arXiv Detail & Related papers (2023-05-12T18:00:03Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Residual Neural Networks for the Prediction of Planetary Collision
Outcomes [0.0]
We present a machine learning (ML) model for fast and accurate treatment of collisions in N-body planet formation simulations.
Our model is motivated by the underlying physical processes of the data-generating process and allows for flexible prediction of post-collision states.
We formulate the ML task as a multi-task regression problem, allowing simple, yet efficient training of ML models for collision treatment in an end-to-end manner.
arXiv Detail & Related papers (2022-10-09T12:42:43Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics.
We introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras.
We propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously.
arXiv Detail & Related papers (2022-10-04T17:49:23Z) - Multi-Output Random Forest Regression to Emulate the Earliest Stages of
Planet Formation [0.1657441317977376]
We take a machine learning approach to designing a system for a much faster approximation.
We develop a multi-output random forest regression model trained on brute-force simulation data.
Results indicate that the random forest model can generate highly accurate predictions relative to the brute-force simulation results.
arXiv Detail & Related papers (2021-04-26T19:51:40Z) - Probabilistic Programming Bots in Intuitive Physics Game Play [0.0]
We propose a framework for bots to deploy probabilistic programming tools for interacting with intuitive physics environments.
The framework employs a physics simulation in a probabilistic way to infer about moves performed by an agent in a setting governed by Newtonian laws of motion.
We present an approach where combining model-free approaches (a convolutional neural network in our model) and model-based approaches (probabilistic physics simulation) is able to achieve what neither could alone.
arXiv Detail & Related papers (2021-04-05T16:14:41Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.