論文の概要: VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool
- arxiv url: http://arxiv.org/abs/2408.08927v1
- Date: Thu, 15 Aug 2024 20:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:26:14.980287
- Title: VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool
- Title(参考訳): VerilogCoder:グラフベースプランニングとAST(Abstract Syntax Tree)ベースの波形追跡ツールを備えた自律的Verilog符号化エージェント
- Authors: Chia-Tung Ho, Haoxing Ren, Brucek Khailany,
- Abstract要約: We propose VerilogCoder, a system of multiple Artificial Intelligence (AI) agent for Verilog code generation。
提案手法は、構文的に94.2%、機能的に正当なVerilogコードを生成する。
- 参考スコア(独自算出の注目度): 4.027984601764008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the growing complexity of modern Integrated Circuits (ICs), automating hardware design can prevent a significant amount of human error from the engineering process and result in less errors. Verilog is a popular hardware description language for designing and modeling digital systems; thus, Verilog generation is one of the emerging areas of research to facilitate the design process. In this work, we propose VerilogCoder, a system of multiple Artificial Intelligence (AI) agents for Verilog code generation, to autonomously write Verilog code and fix syntax and functional errors using collaborative Verilog tools (i.e., syntax checker, simulator, and waveform tracer). Firstly, we propose a task planner that utilizes a novel Task and Circuit Relation Graph retrieval method to construct a holistic plan based on module descriptions. To debug and fix functional errors, we develop a novel and efficient abstract syntax tree (AST)-based waveform tracing tool, which is integrated within the autonomous Verilog completion flow. The proposed methodology successfully generates 94.2% syntactically and functionally correct Verilog code, surpassing the state-of-the-art methods by 33.9% on the VerilogEval-Human v2 benchmark.
- Abstract(参考訳): 現代の集積回路(IC)の複雑さが増大しているため、ハードウェア設計の自動化は、エンジニアリングプロセスからかなりの数のヒューマンエラーを防止し、結果としてエラーが少なくなる。
Verilogは、デジタルシステムを設計・モデル化するための一般的なハードウェア記述言語である。
本研究では,Verilogコード生成のためのマルチ人工知能(AI)エージェントのシステムであるVerilogCoderを提案し,協調的なVerilogツール(構文チェッカー,シミュレータ,波形トレーサなど)を用いて,Verilogコードを自律的に記述し,構文と関数的エラーを修正する。
まず,新しいタスク・アンド・サーキット関係グラフ検索手法を用いて,モジュール記述に基づく全体計画を構築するタスクプランナを提案する。
機能的エラーをデバッグし,修正するために,自律的なVerilog補完フローに統合された,新しい,効率的な抽象構文木(AST)ベースの波形追跡ツールを開発した。
提案手法は、VerilogEval-Human v2ベンチマークにおいて、最先端の手法を33.9%上回る94.2%の構文的、機能的に正当なVerilogコードを生成することに成功した。
関連論文リスト
- Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework [50.02710905062184]
本稿では,Verilog と EDA スクリプトに適合する高ボリュームかつ高品質な自然言語を生成する自動設計データ拡張フレームワークを提案する。
Verilog生成の精度は現在の最先端のオープンソースVerilog生成モデルを超え、同じベンチマークで58.8%から70.6%に増加した。
論文 参考訳(メタデータ) (2024-03-17T13:01:03Z) - BetterV: Controlled Verilog Generation with Discriminative Guidance [11.162807308782751]
本稿では,処理されたドメイン固有ランタイム上での大規模言語モデル(LLM)の微調整を行うVerilog生成フレームワークであるBetterVを提案する。
BetterV は構文的にも機能的にも Verilog を生成する機能を備えており、VerilogEval ベンチマークでは GPT-4 よりも優れている。
論文 参考訳(メタデータ) (2024-02-03T08:00:12Z) - VerilogEval: Evaluating Large Language Models for Verilog Code
Generation [6.88526119890374]
本稿では,VerilogインストラクショナルWebサイトHDLBitsの156問題からなる総合評価データセットを提案する。
評価セットは、単純な組合せ回路から複雑な有限状態マシンまで、様々なVerilogコード生成タスクからなる。
論文 参考訳(メタデータ) (2023-09-14T09:15:34Z) - Benchmarking Large Language Models for Automated Verilog RTL Code
Generation [21.747037230069854]
有用なVerilogを生成するために,大規模言語モデル(LLM)を特徴付ける。
機能解析のためのテストベンチと,Verilogコードの構文をテストするフローからなる評価フレームワークを構築した。
その結果,LLMの微調整結果は,構文的に正しいコードを生成する能力が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-13T16:34:39Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
本稿では,システムログからの信頼性と実用的な異常検出手法を提案する。
1000以上のGitHubプロジェクトのソースコードからログインストラクションを備えた異常検出モデルを構築することで、関連する作業の一般的な欠点を克服する。
提案手法はADLILogと呼ばれ,興味あるシステム(ターゲットシステム)からのログ命令とデータを組み合わせて,深層ニューラルネットワークモデルを学習する。
論文 参考訳(メタデータ) (2022-07-07T10:22:10Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z) - Improved Code Summarization via a Graph Neural Network [96.03715569092523]
一般に、ソースコード要約技術はソースコードを入力として使用し、自然言語記述を出力する。
これらの要約を生成するために、ASTのデフォルト構造によくマッチするグラフベースのニューラルアーキテクチャを使用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:42Z) - Self-Supervised Log Parsing [59.04636530383049]
大規模ソフトウェアシステムは、大量の半構造化ログレコードを生成する。
既存のアプローチは、ログ特化や手動ルール抽出に依存している。
本稿では,自己教師付き学習モデルを用いて解析タスクをマスク言語モデリングとして定式化するNuLogを提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。